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1 Abstract

The irony embedded in optic ‡ow computation is that despite its not having been studied mathematically

until about 20 years ago, humans have been performing the related calculations innately since their creation.

The process can be thought of as …lling in the gaps that occur between the images we see changing in time.

For the human mind, the transition is automatic from what an image looks like at one instant to what it

looks like at the next. Our brain intuitively generates a continuous ‡ow of what it perceives is being viewed

by the eyes.

Manifested in a mathematical sense, optic ‡ow serves as a mechanism to describe the movement of

objects in a digital image sequence using a ‡ow …eld of grayscale intensity. This particular study has focused

upon developing a usable mathematical implementation for two of the various algorithms which have been

proposed to compute optic ‡ow. One method relies upon calculus of variations to regularize the problem

while the other utilizes a wavelet based multi-scale approach.

Possible applications for such research range from data compression of video sequences to the develop-

ment of a more e¢cient way to analyze the time varying one-dimensional acoustic imagery supplied by sonar

systems.
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3.4 Notation

x = (x1, x2) Cartesian coordinate of a pixel in a 2-D image

I(x; t) Grayscale intensity of the image at position x and time t

∂
∂xi

Partial derivative with respect to xi where i = 1, 2

∂
∂t

Partial derivative with respect to t

v(x; t) = (v1, v2) =
µ

δx1

δt
,
δx2

δt

¶
Optic Flow vector

rI =
µ

∂I
∂x1

,
∂I
∂x2

¶
Gradient of I

g(x) Complex Conjugate of the function g

hf, gi =
ZZ

f (x)g(x)dx1dx2 Inner Product of f and g

ψ Generic symbol for a 1-D wavelet

φ Generic symbol for a 1-D scaling function

θn 2-D mother wavelet with n = 1, .., N where N = 3 or 4

θ1 = ψ(x1)φ(x2) High-Low component

θ2 = φ(x1)ψ(x2) Low-High component

θ3 = ψ(x1)ψ(x2) High-High Component

θ4 = φ(x1)φ(x2) Low-Low Component

θn
u = θn(x ¡ u) where u is a 2-D continuous translation index

θn
us(x) = s¡1θn

µ
x ¡ u

s

¶
where s is a continuous scaling index

This forms a 2-D continuous mother wavelet family
θn

jk(x) = 2j/2θn ¡
2jx ¡ k

¢
where j 2 Z and k 2 Z2

This forms a 2-D discrete mother wavelet family
where ψn

jk is located around
¡
2¡jk1, 2¡jk2

¢
and spreads

over a domain of size proportional to 2¡j

L2(R) Set of all square-integrable functions in R
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4 Overview

4.1 Introduction

What is it about motion that human beings …nd so interesting? Why are we so much more likely to

follow a moving object with our eyes than we are to let them rest on something which is static? Perhaps it

is because of the questions we learn to automatically ask ourselves: Where is the object going? Where is it

coming from? How fast is it moving? Do I need to move as well in order to avoid its path? Answers to this

cycle of questions must continually be found as one carries out the process of evading collision. Perhaps the

intriguing factor about motion is that it always takes us to someplace new, someplace di¤erent from where

we just were. The old Italian proverb speaks truly, "A rolling stone gathers no moss." As humans we yearn

to see what we have not yet seen, and only through movement may we accomplish this goal and turn our

view to the unexplored.

This same fascination with motion carries over to the use of a computer in our daily lives. Namely, it

is while watching video that our minds are most captivated by the screen. Neither text, nor graphics, nor

sound can convey so much information to the brain so quickly. Video is essentially the playing of image

sequences and it is only here that one may watch objects moving through space in time. But how does the

computer view this wealth of data? Does it assign any signi…cance to what is happening in the video?

The answer, put quite simply, is no. A computer devotes absolutely no e¤ort to understanding how the

objects are moving in a digital image sequence. It merely displays frame after frame and leaves it up to the

user to mentally …ll in the gaps between images in order to perceive smooth motion. For instance, let’s say

a video clip shows a baseball being thrown from one person to another. Even though the ball is at a certain

position in one image frame and at another position in the next, the computer has no way of knowing where

the ball probably was for the time in between the two images. The human mind, on the other hand, is

intelligent enough to …gure out that the ball must have been somewhere between those two positions during

that time. Thus our brain creates a continuous ‡ow of motion instead of seeing just a series of discrete still

images being played in succession.

An interesting problem here results. Can we solve for this ‡ow in a digital sense? What kind of

information would this provide? How can such a question be tied to applied mathematics? The answers

lie in the concept of optic ‡ow. At the most basic level, it can be understood as a mechanism for describing

the motion captured within an image sequence.

Theoretical development for this scheme has its foundation in the seminal paper by Horn and Schunck

[14] and has later been expounded upon by the publications of Christophe Bernard [3], [4], [5], [6], [7]. In

both cases, the authors do not provide the code they use to generate their results. Rather, they leave their

theories as virtual "black boxes" which may be employed to extract information relating to the motion of
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objects appearing in the image sequence.

As often will happen in the undertaking of a project such as this, more questions have surfaced than

were there at the start. Many riddles still remain surrounding optic ‡ow. For instance, what is the best

way to solve for it? Just how sound are the physics which constitute the theory behind optic ‡ow? Finally,

how useful is the information gained when applied to a practical context? Despite such issues still not

being resolved, new ground has certainly been broken in the quest to present optic ‡ow as a …eld of applied

mathematics which is open to experimentation. A concrete path for implementing the idea has …nally been

laid down.

4.2 Outline of Approach

The body of this paper is divided into …ve main sections. The …rst serves to illustrate the details of

optic ‡ow, how the concept is applied to an image sequence, what kind of equation is being solved, and

exactly what information is being extracted. As our study has taken two completely di¤erent directions

in trying to solve for this optic ‡ow, the next two sections of the paper are devoted to an explanation of

each method. At the outset of the project, we sought to treat the problem using a wavelet based multiscale

approach in the same fashion as Bernard [3], [4], [5], [6], [7]. The actual implementation required to do

this proved itself much more complicated than originally envisioned. Giving up on the problem was not an

option, however, and so the decision was made to begin a new approach in parallel to our ongoing e¤orts.

This attempt relied upon the technique of calculus of variations in a similar manner as Horn and Schunck

[14]. As our research currently stands, the protocol for implementing each method has been developed to the

extent that they can operate on simpli…ed approximations to motion being captured in an image sequence.

The fourth section of the paper evaluates the results attained using these two approaches. Conclusions are

presented in the …fth and …nal section of the paper. Various issues will be discussed here including: which

method appears to work better; what opportunities exist to adjust each model to better suit the problem;

what issues are left unresolved; what are some of the possible future applications for optic ‡ow; and how

does the overall idea behind optic ‡ow stand against other problems examined in applied mathematics.

4.3 Desired Result

The theory behind this project is both powerful and highly desirable for application to a context where

determination of an object’s motion is the foremost goal. Without a tangible way of utilizing it, however,

a theory doesn’t amount to having much value at all. This is especially true for the Navy and the military

as a whole which places an indisputable requirement on practicality. Therefore, the primary focus of the

research conducted for this project has been to produce a deliverable which harnesses the potential of this

theory and sets it down in a usable code.
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As a second bene…t accompanying our study, we have performed a mathematical comparative analysis

on the di¤erent methods for implementation. In each case, observations were made regarding the advantages

and shortcomings of that particular approach . E¤ectively, this process may be considered the optimization

of the tools we have created for practical use. This is the very crux of the original project proposed because

it answers the questions of how one might take an existing mathematical theory and apply it. The knowledge

gained throughout the development of such implementation has been an invaluable reward to the writer and

hopefully it will serve as the same for those who seek to build upon its foundations.

5 Optic Flow

5.1 Concept Introduced

The irony embedded in optic ‡ow computation is that despite its not having been studied mathematically

until close to 20 years ago, human beings have been performing the related calculations innately since their

creation. In its most common sense, optic ‡ow measurement is the description of images as they change in

space and time. The process can be thought of as …lling in the gaps that occur between the instantaneous

images we see. For the human mind, the transition is automatic from what an image looks like at one instant

to what it looks like at the next. Our brain intuitively generates a continuous ‡ow of what it perceives is

being viewed by the eyes [4].

The digital analogy is not so simple. Image sequences, or video, is treated by a computer as a set of

discrete pictures which when cycled through quickly, create for the viewer the e¤ect of a scene changing

as time progresses. If the images were not recorded at a rapid enough rate, when played back, the video

will appear blurred and choppy. This phenomenon occurs because the computer does not have the inherent

intelligence to say that what was at one place at one time must have gotten to its next position along a

relatively smooth and logical path. It cannot automatically assume that for those instants when it does not

have a displayable image, the objects in motion were at some point in between the recorded positions. This

is exactly the problem which spawned the concept of optic ‡ow [4].

In one of the most de…nitive works analyzing the subject, Christophe Bernard describes optic ‡ow as “a

visual displacement ‡ow …eld that can be used to explain changes in an image sequence” [3], [4]. In other

words it can be thought of as a vector …eld with its arrows pointing in the direction of movement for the

objects in motion within the video. He provides a very clear illustration of this in Figures 1 and 2:
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Figure 1: Car Scene

Figure 2: Measured Optic Flow

Here three cars are in motion: a light colored taxi making a turn onto a side street, as well as a dark car

and a dark van which are driving in opposing directions on the main street. The corresponding measured

image ‡ow graph shows a high concentration of vector arrows in the location of each of the three moving

objects representing their direction of travel. In those areas of the image where there is no motion, e.g.

the parked cars and building, very few arrows appear and none have signi…cant magnitude. Our goal is to

be able to solve for these vectors based on a mathematical model for what motion is going on in the image

sequence.

Observing this vector …eld, we see that the velocity of the grayscale intensity is being represented from

an Eulerian perspective since it gives us a snapshot of the optic ‡ow as a function of pixel position. This

allows us to visualize how the image sequence is changing at each instant in time as opposed to a Lagrangian
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approach which would display a vector …eld that would trace the path of individual objects as they moved

throughout time [17, pg. 304].

The immediate question that must be asked is exactly how a computer is supposed to correctly detect the

movement of objects in an image sequence. Surprisingly, the answer is not overly complicated. Every image

stored digitally can be thought of as a three-dimensional surface with the x and y coordinates describing

the location of a pixel within the image and the z coordinate relating to the grayscale, or intensity, of that

speci…c pixel. This scheme is easily visualized by examining Figures 3 and 4:

Figure 3: Sample Grayscale Image

Figure 4: Digital Representation of Grayscale Image
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Within the picture of the stapler sitting on the desk, there exist varying grayscale intensities. These

directly correspond to the di¤erent heights of the surface portrayed in Figure 4. Where the image in Figure

3 is white, the surface in Figure 4 is very high. Conversely, where the image is black, the surface is low.

NOTE: The color appearing in Figure 4 serves merely to visually accentuate the shape of the surface and

has no correlation to color appearing or not appearing in the image. Also, the labels A, B, C, and D appear

only as a guide for the reader to …nd the corresponding corners between the image and the surface.

As time progresses and objects move within a scene, the intensities of the individual pixels will invariably

change. This movement is visualized by the computer as the three-dimensional surface changing shape. It

is here that mathematics enters the problem as surfaces and their changing shape in space and time are

describable using partial di¤erential equations (PDEs).

5.2 Process Illustrated

The task now becomes to …t a mathematical model to the concept of optic ‡ow. Our …rst step in this

process is to decide on a set of assumptions which make the problem more approachable at …rst glance. Two

critical assumptions made by Horn & Schunck and Bernard are: the ob jects appearing in the image are

receiving uniform illumination (i.e. the ambient lighting is not changing); and the grayscale intensity of a

particular point on the ob ject is constant over local space and time [14], [3], [4], [5], [6], [7]. Although this

may seem like a gross oversimpli…cation of real-life conditions, these constraining assumptions actually make

sense when taken in terms of the practicality of optic ‡ow.

At its root, optic ‡ow is a mechanism for representing the motion of objects in an image sequence using

vector arrows. In order to …nd these arrows, we choose a starting or "base" image in the sequence in which

all the ob jects pictured are said to be in their original position. As time progresses, the objects move and

so their pixel positions change from image frame to image frame. The concept of optic ‡ow is to track

these moving objects and assign to this motion a set of vector arrows from frame to frame. As is the case

with any mathematical model, there will be some error in optic ‡ow’s ability to predict. There will be a

di¤erence between the actual image frames and what is predicted from the base image and the ‡ow …elds.

This di¤erence is known as the correction factor. Since every frame is known, the correction factor can be

solved for exactly and so perfect reconstruction can occur for subsequent images using the base image, the

optic ‡ow …eld, and the correction factor. In essence, this says that we can project into the future of the

image sequence from a certain starting point in time.

Now, we ask what happens when one of our constraining assumptions is violated? This could very

realistically happen when the illumination in the image changes from frame to frame and one of the objects

in motion now appears di¤erently in its shading/grayscale intensity. We may no longer use the original base

image to project forward in time with optic ‡ow. The overall process, however, doesn’t come to a permanent

halt. We merely begin over again by setting the next frame in the sequence to be the new base image.



12

From there we begin tracking the motion of ob jects from their new "original" position. Figure 5 illustrates

this process.

Figure 5: Schematic for Optic Flow Process

There are two ways of representing the motion of objects smoothly in an image sequence, either use

more image frames per unit time or actually track the object movement using vector arrows in optic ‡ow.

According to the method just described, optic ‡ow provides the distinct advantage of using much less digital

storage space. Byte requirements for vector …elds/correction factors as opposed to full images are markedly

less. Thus consider an average video sequence which uses 32 frames per second. Even if it is undergoing

rapid illumination changes and a new base image is having to be chosen about once a second, optic ‡ow is

still able to replace about 31 images with vector …elds [5], [6].

5.3 Governing Equation

Having stepped through that process, let us now turn to the development of the governing partial

di¤erential equation (PDE) for optic ‡ow [14]. Starting from the constraining assumption that the grayscale

intensity of an object is the same over local space and time (and using the notation previously de…ned), we

arrive at the following equivalence relation:
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I(x1, x2, t) = I(x1 + δx1, x2 + δx2, t + δt). (1)

In expanding the right hand side of Equation (1) around the point (x1, x2, t) we see that

I(x1, x2, t) = I(x1, x2, t) + δx1
∂I
∂x1

+ δx2
∂I
∂x2

+ δt
∂I
∂t

+ ε. (2)

where ε is the error term. If we consider the limit of going over the most localized space and time, then

ε ! 0 . The next step is to subtract I(x1, x2, t) from both sides of Equation (2) and then divide both sides

by δt . This yields

0 = δx1
δt

∂I
∂x1

+ δx2
δt

∂I
∂x2

+ ∂I
∂t .

which is equivalent in the prede…ned notation to be

0 =
∂I
∂x1

v1 +
∂I
∂x2

v2 +
∂I
∂t

. (3)

As Equation (3) is the governing PDE for optic ‡ow, this represents the beginning of our analysis.

The image intensity function I is known at each pixel x at each time t. Therefore we may state that

the partial derivatives of the intensity
∂I
∂x1

,
∂I
∂x2

, and
∂I
∂t

can be found. Thus in this governing equation

for optic ‡ow, also known as the intensity constraint equation, we see that there are two unknowns, namely

the components of the velocity v1 and v2. In a single linear equation such as this where there are two

unknowns, the problem is said to be ill-posed. We cannot solve for both components of the velocity without

an additional constraint. Figure 6 illustrates this concept.
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Figure 6: Ill-Posedness of Optic Flow Problem

In this example …gure, a level curve of the intensity function can be thought of as a part of the image

which has the same grayscale intensity throughout. By de…nition of gradient, the vector rI =
³

∂ I
∂ x1

, ∂I
∂x2

´

is perpendicular to the level curves. The reader will see that using the governing equation, one can always

solve for the component of the optic ‡ow which is in the direction of the gradient of the intensity function

for any given point x.

Equation (3) can be rewritten,

µ
∂I
∂x1

,
∂I
∂x2

¶
¢ (v1,v2) = rI ¢ v = ¡∂I

∂t
. (4)

If we apply the de…nition of dot product that a ¢ b = kakkbk cos θ where θ is the angle between the two

vectors, we arrive at Equation (5),

rI ¢ v = krIk kvk cos θ = ¡∂I
∂t

. (5)
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Dividing through by krIk gives us the component of the optic ‡ow vector in the direction of the velocity

gradient,

kvk cos θ = ¡
∂I
∂t

krIk . (6)

This component of the optic ‡ow vector, which is labeled in Figure 6, can always be solved for using the

governing PDE. What must be noted from Figure 6, however, is the fact that various optic ‡ow vectors could

all have this same component. The second component of the optic ‡ow (i.e. the one that is perpendicular

to rI) cannot be solved for using only the intensity constraint equation. At least one more equation is

needed to be able to …nd the complete optic ‡ow v as a unique solution. This condition is what makes the

problem ill-posed as it now stands.

There are four principal approaches to making this problem one that can be considered well-posed

mathematically: regularization, correlation/matching methods, spatiotemporal …ltering methods, and …l-

tered di¤erential methods [3], [2]. Sections 6 and 7 of this paper examine the attempts made by Bernard and

Horn & Schunck, respectively. Bernard’s approach can be characterized as a projected di¤erential method

which employs a multiscale technique. According to this method, he "hits" the governing equation with a

wavelet basis, makes an assumption about the optic ‡ow on a local scale, and so transforms the problem into

a system of matrix equations. Thus he provides a satisfactory number of equivalence relations to uniquely

solve for both components of the velocity …eld [3], [4], [5], [6], [7]. In a completely di¤erent approach, Horn

and Schunck rely on the addition of a smoothness constraint and the technique of calculus of variations to

regularize their problem and so make it well-posed [14].

5.4 Additional Issues to Consider

Despite the existence of several valid methods for making optic ‡ow a stable and solvable problem,

there remain a few additional sources of error which require addressing [27, pg. 70]. Here they will only be

mentioned in brief.

The …rst source can be thought of in terms of stochastic error. Speci…cally, the digital mapping of real-

life scenes to grayscale image sequences will invariably include the presence of sensor noise. There exists a

disparity between the actual velocity of the objects being …lmed and what the corresponding velocity will

be in the optic ‡ow …eld. This di¤erence may be described as a random noise variable which is statistical

in nature. Various techniques exist to minimize the error stemming from this source [23].

Another key issue which surfaces is the fact that the governing equation for optic ‡ow neglects any

interaction by second order terms in the displacement of grayscale intensity. In other words, it only accounts

for ‡ow velocity and pays no attention to the e¤ects of acceleration within the ‡ow. This leads to a systematic

error whenever the magnitude of the velocity is large over a localized area [27, pg. 70].
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Finally, we note that error could arise from a ‡aw in the model for optic ‡ow itself. Perhaps the physics

and the theory behind the governing equation don’t hold and the assumption that the brightness of an object

doesn’t change over time (i.e. that grayscale intensity is conserved) is not valid. These problems could very

well manifest themselves in a negative sense as one goes about solving for optic ‡ow depending upon the

particular image sequence [27, pg. 70].

Within the scope of this paper, methods for overcoming the …rst and last of these sources of error

will not be addressed in detail. However, the second issue concerning the systematic error due to large

displacements is dealt with under Bernard’s approach in the next section.

6 Wavelet Based Multiscale Approach

6.1 What Makes Wavelets Unique

As was stated in the previous section, Bernard attempts to overcome the ill-posedness of the problem

by creating a system of matrix equations through the use of a wavelet basis. But what makes wavelets

so special that they provide a better way to solve for the optic ‡ow vectors? What is special about the

information wavelets can extract?

Bernard describes the utility of wavelets in the context of optic ‡ow in terms of their ability to break

through the challenge posed by the aperture vs. time aliasing problem. When trying to capture the motion

of an object in an image sequence, the di¢culty lies in …nding a mathematical "window" which is big enough

to measure the displacement of that object between frames, and yet not so large that the motion becomes

so insigni…cant that it is undetectable [3].

An illustrative example of this concept presents itself if one thinks of watching a game of baseball

under two di¤erent circumstances. The …rst involves looking at the …eld through a pair of binoculars.

Although one is able to zoom in and watch what sign the catcher is giving to the pitcher, it is impossible

to simultaneously see that the runner on …rst base is moving to steal second. This inability to see large

scale motion while looking through a small, high resolution window is referred to as the aperture problem.

In e¤ect, the aperture one is looking through is not of su¢cient size to see the big picture. The second

case entails watching the game using only one’s normal vision. Now the viewer can see that the runner is

attempting to steal the base, however, they cannot at the same time see what motion the catcher makes with

his …ngers as a sign to the pitcher. Here the window is so large that small scale motion becomes insigni…cant

and so is lost to the sensors of visual perception. This is known as time aliasing since small displacements

become aliased out of the picture by the comparatively large and low resolution viewing window.

In terms of solving for optic ‡ow, the greatest impediment comes when large scale motion is occurring

in one region of the image sequence while small scale motion is simultaneously occurring in another. The
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following discussion will demonstrate the properties of wavelets that allow them to overcome this problem

and so avoid the limitations of time aliasing vs. aperture. Upon completion of this general overview of

wavelets, we will see how Bernard applies them to the speci…c challenges posed by optic ‡ow.

6.2 Wavelets and Multiresolution Analysis

As the inherent value of wavelets stems from their ability to perform a multiresolution analysis (MRA),

we shall start there by de…ning exactly what this concept means. The basic principle behind a multiresolution

analysis is to decompose a function space into a sequence of subspaces, denoted by Vj . It must be noted that

the set of functions mentioned here are all those which are square integrable, namely all functions f such

that
Z 1

¡1
(f (t))2 dt < 1 . This function space is denoted by L2(R). When referring to the decomposition

of f , it may be helpful to think of the function as a signal which is being broken down into its components

occurring at di¤erent scales. The subspace Vj is de…ned according to its integer valued resolution j such

that all details of the signal which are of scale less than 2¡j are suppressed [19], [28], [26], [16], [20].

A number of requirements are placed upon the subspaces Vj in order for them to form a true multireso-

lution analysis. The …rst states that Vj be contained in every subspace which is higher in resolution than j.

If we de…ne the jth level approximation to f (t) as fj(t) then fj (t) 2 Vj, which in plain language means that

fj(t) belongs to the subspace Vj . Logically, we see that any details which can be captured at resolution level

j must also be included with the information at a higher resolution. Therefore, Vj has to be contained in

Vj+1, which is represented mathematically by Vj ½ Vj+1 for all integer values of j. Extending this principle,

we arrive at the following nesting of subspaces: ... ½ Vj¡2 ½ Vj¡1 ½ Vj ½ Vj+1 ½ Vj+2 ½ ... [22], [28], [19],

[16].

The details which are lost in going from the approximation of f at level j + 1 to level j are those which

occur at scale 2¡(j+1). We de…ne them by dj (t) = fj+1(t) ¡ fj(t). From this relationship we arrive at the

equivalence relation

fj+1(t) = fj (t) + dj (t).

The corresponding subspaces can be represented accordingly,

Vj+1 = Vj © Wj.

Here the notation Wj refers to the detail space at resolution level j and Wj is orthogonal to Vj . This means

that if we took the inner product between any element g in Wj and any element h in Vj, the result would

equal 0:

hh, gi =
R 1

¡1 h(t)g(t)dt = 0.

This breakdown of subspaces can continue on so that we obtain Equation (7),

Vj+1 = Wj © Vj = Wj © Wj¡1 © Vj¡1 = ... = Wj © Wj¡1 © Wj¡2 © ... © Wj¡J © Vj¡J . (7)
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If Wj is orthogonal to Vj it is also orthogonal to any subspace of Vj , including all detail spaces Wk such that

k < j. From Equation (7), we see that our approximation space at level j, Vj , can be written as a sum of

subspaces. This is the …rst requirement for an MRA [28], [19].

The second necessary condition is that all square integrable functions can be represented at the …nest

level approximation space and also that only the zero function is contained at the coarsest level of resolution.

Explanation for the second of these points stems from the fact that as the resolution becomes coarser and

coarser, more and more details are lost and at the limit j != ¡1, only a constant function remains. In order

to meet the requirement of square integrability, that function must be exactly equal to zero. Mathematically

this can be represented either by the limit: lim
j!¡1

Vj = f0g or by the in…nite intersection of subspaces:

\jVj = f0g. Conversely, as resolution increases, more and more details are included. Therefore, as

the resolution level approaches positive in…nity, the entire space of square integrable functions should be

recovered. This can be written mathematically either by the limit: lim
j!1

Vj = L2(R) or by the closure of

the union of all subspaces: [jVj = L2(R) [28], [22].

The third requirement states that all the spaces fVjg are scaled versions of the space V0 which is named

the central space. If we say that the function f (t) 2 Vj, in other words there are no details in f(t) which

appear at scales smaller than 2¡j, then f (2t) is the function attained by compressing f(t) by a factor of 2

so that it contains no details at scales less than 2¡(j+1). Therefore, f (2t) 2 Vj+1. This condition is known

as scale or dilation invariance [28].

Condition number four mandates that the space Vj be translation or shift invariant. Therefore, if

f (t) 2 V0 then also f (t ¡ k) 2 V0 for all integers k. The combination of this requirement with the third one

relating to scale invariance give way to the fact that if f (t) 2 V0, then f (2j t ¡ k) 2 Vj [19], [28], [16].

The …nal requirement for a multiresolution analysis is that there must exist a function φ such that all of

its translates form an orthonormal basis for V0. In this case, orthonormality requires two separate conditions

be met, one of orthogonality and the other of normalization to 1. The …rst is that for any two integers k 6= l,Z 1

¡1
φ(t ¡ k)φ(t ¡ l)dt = 0 while the second states that for any integer k,

Z 1

¡1
(φ(t ¡ k))2dt = 1. If we

apply the scale invariance property, we …nd that fφ(2t ¡ k)gk becomes an orthogonal basis for V1. Using

the same line of reasoning, if we de…ne φjk(t) = 2j/2φ(2jt ¡ k), then fφjk(t)gk forms an orthonormal basis

for the space Vj . In referring to φjk as a basis function, we mean that any function fj which lives in the

space Vj can be represented as a sum of these basis functions,

fj (t) =
1P

k=¡1
ajkφjk (t).

Extending this result, we say that any square integrable function f which necessarily lives in L2(R) can be

expanded as a sum of the basis functions φjk across all scales,

f (t) =
1P

k=¡1

1P
j=¡1

ajkφjk (t).

The name given to the function φ which generates the basis functions for all spaces fVjg is the scaling
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function of the multiresolution analysis [19], [28], [16], [26].

In order to construct the basis functions for all spaces fVjg from the scaling function φ, we look to

an equivalence relation known as the Scaling Equation. Its development begins with the following line of

reasoning. According to our previous discussion of the nesting of subspaces, V0 ½ V1 and therefore any

function which resides in V0 can be expanded in terms of the basis functions for V1. More speci…cally, the

scaling function φ 2 V0 can be written in terms of fφ1k (t)gk,

φ(t) =
1X

k=¡1
hkφ1k(t) =

p
2

1X

k=¡1
hkφ(2t ¡ k). (8)

Equation (8) is called the Scaling Equation. This same process can be applied to relate the scaling functions

between any two successive levels of resolution,

φJ¡1,m (t) =
p

2J¡1φ
¡
2J¡1t ¡ m

¢
=

p
2J

1P
k=¡1

hkφ(2Jt ¡ k) =
1P

k=¡1
hkφJ,k(t).

The …lter coe¢cients fhkg can be found, using the fact that fφ1k(t)g are orthonormal, by taking the

inner product

hk = hφ, φ1k i =
p

2
Z 1

¡1
φ(t)φ(2t ¡ k)dt.

Using this process, we are able to …nd the functions φjk (t) which form a basis for any approximation space

Vj [28], [19], [16].

We now shift our attention to the detail spaces denoted by fWjg. If we use the fact that lim
j!¡1

Vj = f0g
and we extend Equation (7) to lim

j!¡1
, we …nd that we can represent the approximation space Vj+1 by the

orthogonal sum

Vj+1 = ©j
k=¡1Wk .

If we let j ! 1, we see that

L2(R) = ©1
k=¡1Wk .

In other words, the set of all square integrable functions can be broken down into orthogonal subspaces, each

of which can detect details of the functions up to a given resolution. This means that the union of all the

basis functions for fWjg serve in the same manner as a basis for L2(R). Just as the approximation spaces

Vj each had a basis fφjk(t)gk , every detail space Wj in a multiresolution analysis has its own orthonormal

basis fψjk(t)gk . In similar fashion to φjk (t), we de…ne ψjk (t) = 2j/2ψ(2jt ¡ k). Thus we may say L2(R)

has an orthonormal basis fψjk (t)gjk known as the wavelet basis, also referred to as a wavelet family [28],

[19], [16], [20].

The function ψ(t) which is used to construct all the basis functions ψjk (t) for the Wj spaces is known

as the mother wavelet. By de…nition of ψjk (t) we see that fψ (t ¡ k)gk belongs to W0 and since Equation

(7) tells us that W0 ½ V1, ψ(t) can be written as the sum of the basis functions for V1, fφ1k (t)gk :
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ψ(t) =
1X

k=¡1
gkφ1k (t) =

p
2

1X

k=¡1
gkφ(2t ¡ k). (9)

Equation (9) is known as the Wavelet Equation and it can be extended to …nd the relationship between the

wavelet and the scaling function at the next …ner scale for any two successive levels of resolution.

Just as we did to solve for the …lter coe¢cients of the scaling equation, we apply the fact that fφ1k (t)gk

are orthonormal to …nd the …lter coe¢cients gk ,

gk = hψ, φ1k i =
p

2
Z 1

¡1
ψ(t)φ(2t ¡ k)dt.

Using this process, we are able to …nd all of the functions ψjk (t) needed to form a basis for L2(R) [19], [28],

[16].

The following example will demonstrate how a sample square integrable function can be decomposed

into a set of approximations and details occurring at various levels of resolution according to an MRA. Our

choice of scaling function and wavelet bases is referred to as Daubechies 4 in [26]. As the speci…cs on how

to construct these bases are described by Walker, who founds his work upon the seminal paper by Ingrid

Daubechies [8], we leave the reader to examine these references so as not to draw the discussion too far

from the focus of how a multiresolution analysis works. The MATLAB
R°

code written to generate these

bases and the ensuing MRA of the sample signal is listed in the Appendices of this paper under the …lename

Daub4_10.m . For now, let it su¢ce to say that these scaling functions and wavelets were designed by

Daubechies to be orthonormal and of compact support (i.e. the functions only have non-zero value for a

…nite closed interval).

Figure 7 shows a sample signal which is represented in MATLAB
R°

as a vector of length 1024.

Figure 7: Sample Signal
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Since the signal f (t) is of length 1024 = 210, the …nest resolution level to which we can decompose it is

j = 10 and the coarsest level is j = 1. The coarse to …ne approximations to f (t), f1(t) through f10(t), are

displayed in Figures 8 and 9.

Figure 8: Coarser Approximations to Sample Signal

Figure 9: Finer Approximations to Sample Signal
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Figures 10 and 11 show the details of f (t), d1(t) to d10(t), from coarse to …ne.

Figure 10: Coarser Details of Sample Signal

Figure 11: Finer Details of Sample Signal
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From examination of Figures 8 and 9, one can see that the …nest approximation of f (t) at resolution

level j = 10 does a perfect job of capturing every detail about the signal. This corresponds to the …nest

level details of the sample signal, d10(t), taking on the value of zero. In e¤ect, no information is lost when

f (t) is approximated by f10(t). As the approximations get progressively coarser, more and more details are

left out until we see that the coarsest approximation at level j = 1, f1(t), only a constant function survives.

We now seek to validate the assertion of Equation (7) and prove that a signal can be perfectly recon-

structed by summing up the approximation to it at level j ¡ J with the details from level j down to j ¡ J.

We choose the arbitrary value of J = 5 to show a reconstruction after six levels of decomposition. Figure

12 demonstrates the fact that

f (t) = d10(t) + d9(t) + d8(t) + d7(t) + d6(t) + d5(t) + f5(t).

Figure 12: Reconstruction of Sample Signal

So far, our discussion of wavelets and multiresolution analysis has taken place in the context of one-

dimensional function spaces. The problem of optic ‡ow, however, involves two-dimensional images. There-

fore, we must see how these concepts evolve in 2-D.

To construct a two-dimensional scaling function, one merely takes the tensor product of two one-

dimensional scaling functions,
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φ(x1,x2) = φ(x1)φ(x2).

In turn, the Scaling Equation becomes

φ(x1, x2) = 2
1X

k=¡1

1X

l=¡1
hk,lφ(2x1 ¡ k, 2x2 ¡ l). (10)

Both φ(x1) and φ(x2) satisfy the 1-D Scaling Equation φ(x) =
p

2
1P

k=¡1
hkφ(2x ¡ k) so therefore we may

write hk,l = hkhl. Thus, the 2-D Scaling Equation is the product of two 1-D Scaling Equations [28].

We now approach a shift in terminology for the two-dimensional case. Here, a 2-D Mother Wavelet can

be any of four combinations denoted by,

θ1(x1, x2) = ψ(x1)φ(x2),

θ2(x1, x2) = φ(x1)ψ(x2),

θ3(x1, x2) = ψ(x1)ψ(x2),

θ4(x1, x2) = φ(x1)φ(x2).

Notice that the general 2-D Mother Wavelet θn (x1, x2), with index n = 1, 2, 3, or 4, can be composed of a

tensor product of either 1-D scaling functions, wavelets, or both. The signi…cance of each lies in the di¤erent

types of information they provide. θ1 is known as the High-Low component because it provides detailed

high-resolution information in the x1 direction and long-term trend information in the x2 direction. This

stems from the fact that 1-D wavelets form bases for the detail spaces of a signal’s decomposition while 1-D

scaling functions form bases for the approximation or "trend" spaces. Thinking of an image as a 2-D signal,

θ1 would serve best to capture vertical lines appearing in the image. Similarly θ2, being the Low-High

component, would provide the most information about horizontal lines occurring in an image [3, Ch. 4], [28].

At this point, the basic theory behind wavelets and multiresolution analysis has been explained. We

now seek to demonstrate how Bernard makes use of these concepts to solve the problem of optic ‡ow.

6.3 Application of Wavelets to Optic Flow

A key question still remains unanswered. What is the exact purpose wavelets serve in solving for the

coe¢cients of the optic ‡ow vectors v1 and v2? The answer lies in the multiscale nature of wavelets.

In real life, actual motion of an object happens over a continuum of both space and time. This is not

the case in the context of an image sequence. In this digital environment, motion is represented by an object

comprising a set number of pixels that shifts over a certain number of pixels in the x1 and x2 directions. It

may help to think of the space-time continuum being projected onto a discrete grid of pixels and frames.

This is exactly why wavelets become so bene…cial.

We de…ne the 2-D wavelet family

θn
jk(x) = 2j/2θn ¡

2jx ¡ k
¢

where j 2 Z and k 2 Z2 and n = 1, ..., 4.
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Here Z represents the set of all integers and Z2 the 2-D Cartesian grid of integers. Let us consider a video

sequence where every image is of a 2J by 2J pixel grid. Standard practice is to think of this area being

normalized so that it has length 1 in both the x1 and the x2 direction. Accordingly, each pixel is considered

to be a square with each of its sides having length
1
2J = 2¡J . At each resolution level j, the 2-D wavelet

cannot detect details of the image which are of scale less than 2¡j . In other words, θn
jk(x) can only detect

features of an image which are of size 2J¡j pixels by 2J¡j pixels or larger. The wavelets at the …nest

resolution level J , namely θn
Jk(x), can therefore zoom in on details which are only one pixel wide by one

pixel long [3], [7].

From this result we are able to see how a multiresolution analysis performed with a two-dimensional

wavelet basis allows us to capture both large and small scale motion occurring in an image sequence at the

same time. An object which is moving at a relatively high velocity will be represented as jumping across

large gaps in the pixel grid from frame to frame. Wavelets at the coarser levels of resolution have a larger

support and so they will be able to detect this change in location of the object. Conversely, wavelets at

…ner levels of resolution do not have a support large enough to enclose the entire displacement travelled by

the object and so they cannot measure its motion within their window. This is the aperture problem. On

the other hand, an object travelling at a relatively low velocity will only move across a few pixels in the

grid from frame to frame. Wavelets at the …ner levels of resolution will have support small enough to zoom

in and detect the fact that the object may have only shifted over by a few pixels. For those wavelets at

the coarser levels of resolution, however, the motion may not represent a large enough trend and so it will

suppressed as too small of a detail. This is what is known as time aliasing.

We see, however, that the time aliasing vs. aperture problem is avoided when we simultaneously apply

all levels of resolution in our MRA to the motion occurring between two frames. The large scale motion

is represented in the coarser levels of resolution. This information will translate into long vector arrows

in the optic ‡ow …eld. Small scale motion can be seen at the …ner levels of resolution and will translate

into shorter vector arrows in the solution for the optic ‡ow. Additionally, the application of the di¤erent

components of the 2-D wavelets, namely θ1,θ2,θ3, and θ4, to the image sequence allows us to account for the

detection of an object’s motion in any direction [3], [4], [5], [6], [7].

In theory, everything seems to work out. Let us now turn to Bernard’s method of solving for the

optic ‡ow vectors to see if these wavelets really are overcoming the challenges of the problem when put into

practice. Keep in mind throughout the discussion that our end goal is to solve for a …nite number of vectors,

each of which will be applied to a certain subgrid of pixels in the image to represent the optic ‡ow.

Once again we begin with the governing equation for optic ‡ow,
∂I
∂x1

v1(x) +
∂I
∂x2

v2(x) +
∂I
∂t

= 0.

We hit the governing equation with a basis function θn
u (x) = θn(x ¡ u) de…ned in our notation earlier, and
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then integrate,

ZZ µ
∂I
∂x1

v1(x) +
∂I
∂x2

v2(x) +
∂I
∂t

¶
θn(x ¡ u)dx1dx2 = 0, for n = 1, .., N . (11)

Here N could equal 3 or 4. Equation (11) can be expanded and rewritten in inner product notation,

¿
∂I
∂x1

v1, θn
u

À
+

¿
∂I
∂x2

v2, θn
u

À
+

¿
∂I
∂t

, θn
u

À
= 0, for n = 1, .., N . (12)

At this point, Bernard makes his most critical assumption. He states that the optic ‡ow vectors v1(x)

and v2(x) are constant over the supports of the basis functions θn
u , i.e.

v1(x) = v1(u) for all x 2 support θn
u, for all n,

v2(x) = v2(u) for all x 2 support θn
u, for all n.

Therefore, if the optic ‡ow vectors are constant over the domain of the inner products, they can be taken

outside of the integrals. In addition, since the inner products are integrals being taken with respect to x,

we can take the partial derivative with respect to time
∂
∂t

outside of the third inner product term,

¿
∂I
∂x1

, θn
u

À
v1(u) +

¿
∂I
∂x2

, θn
u

À
v2(u) +

∂
∂t

hI, θn
ui = 0, for n = 1, .., N . (13)

If we perform an integration by parts for the …rst two inner products, we arrive at the equation

¿
I,

∂θn
u

∂x1

À
v1(u) +

¿
I,

∂θn
u

∂x2

À
v2(u) =

∂
∂t

hI, θn
u i , for n = 1, .., N . (14)

Note: The terms Iθn
u

¯̄
¯̄ a

b
are equal to 0 and therefore, they do not appear in Equation (14). This

is because a and b represent the boundaries of the image and the basis functions θn
u only have …nite support

so they vanish on the boundaries.

Equation (14) is a key equation because if we now turn back to θn
u for n = 1, .., N where N = 3 or 4 as

de…ned previously in our notation, we have a projected system of N equations with two unknowns v1(u)

and v2(u),

8
>>>>>><
>>>>>>:

¿
I,

∂θ1
u

∂x1

À
v1(u) +

¿
I,

∂θ1
u

∂x2

À
v2(u) =

∂
∂t

­
I, θ1

u
®

...
...

...*
I,

∂θN
u

∂x1

+
v1(u) +

*
I,

∂θN
u

∂x2

+
v2(u) =

∂
∂t

D
I, θN

u

E
. (S)
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We say that this system, which Bernard refers to as (S), is pro jected because for each u that we could

choose in translating across the image, we are able to say that the optic ‡ow vector v is constant over the

support of θn
u [3]. The problem with this, however, is that u lives in the continuum so therefore our

individual optic ‡ow vectors could be constant over a certain area of the image but not necessarily for a

certain group of pixels. This leaves us with the fact that we still have a vector …eld v we are solving for and

not a …nite system of individual vectors as we desire.

Furthermore, there is no mention of scale in (S). We need to …t in some way of re…ning this scheme

so that we can account for average trends and di¤erences over various groupings of pixels. This insertion

of multiresolution analysis will allow our discrete set of optic ‡ow vectors more closely approximate the

continuous optic ‡ow …eld [3].

Finally, we must also contend with the issue that an image sequence is sampled in time (i.e. motion is

captured with a discrete number of image frames). Therefore, the right hand side of (S) which is a partial

derivative with respect to time,
∂
∂t

hI,θn
ui ,

must be approximated with some sort of …nite di¤erence such as:

∂I
∂t

' I(t + 1) ¡ I(t),

where t + 1 really just represents the next image frame from the one at time t.

In his thesis [3], Bernard actually uses a higher order estimate to the time derivative and measures the

optic ‡ow at each t + 1/2 according to

∂I(t + 1/2)
∂t

' I(t + 1) ¡ I(t). (15)

This approximation makes sense if one considers the Fundamental Theorem of Calculus for derivatives:

f 0(c)(b ¡ a) = f (b) ¡ f (a) where b ¡ a = 1 for our example.

Now we will introduce di¤erent scalings of the basis functions so that we may perform an MRA later

on to solve for our optic ‡ow vector:

θn
us(x) = s¡1θn

µ
x ¡ u

s

¶
,

where s is a continuous scaling index. We examine the inner products on the left hand side of (S) evaluated

at t + 1/2,

¿
I(t + 1/2),

∂
∂xi

θn
us

À
. (16)
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We use the following averaging estimation to approximate I at a non-integer time (i.e. in between frames):

I(t + 1/2) ' I(t) + I(t + 1)
2

. (17)

If we make use of (15), (16), and (17) we can form a new projected system of equations that includes

various scales of the basis functions and also is discretized in time,

8
>>>>>>><
>>>>>>>:

X

i=1,2

¿
I(t + 1) + I(t)

2
,
∂θ1

us

∂xi

À
vi(u) =

­
I(t + 1) ¡ I(t), θ1

u
®

...
...

...
X

i=1,2

*
I(t + 1) + I(t)

2
,
∂θN

us

∂xi

+
vi(u) =

D
I(t + 1) ¡ I(t), θN

u

E
. (DS)

One problem still remains, we are still trying to solving for our optic ‡ow as a vector …eld rather than

a set of individual vectors [3], [5], [6], [7]. This is because in (DS) , we are still employing the use of a

continuous translation parameter u and a continuous scaling/dilation parameter s . In order to resolve this

issue, we sample the continuous parameters u and s to create discrete parameters k and j . We formulate a

new set of basis functions which Bernard now begins calling a wavelet family fθn
jkgn=1,..,N ; j2Z;k2Z2 de…ned

by:

θn
jk (x) = 2j/2θn(2jx ¡ k),

where j is a resolution index, and k = (k1, k2) is a 2-D translational index. The 2-D wavelet θn
jk is located

around (2¡jk1, 2¡jk2) and has support over a domain of size proportional to 2¡j .

Using this new set of discrete translation indices, we may now express our system of equations as:

8
>>>>>>><
>>>>>>>:

*
I,

∂θ1
jk

∂x1

+
v1 +

*
I,

∂θ1
jk

∂x2

+
v2 =

¿
∂I
∂t

, θ1
jk

À

...
...

...*
I,

∂θN
jk

∂x1

+
v1 +

*
I,

∂θN
jk

∂x2

+
v2 =

¿
∂I
∂t

, θN
jk

À
. (Sjk)

The approximations for the discretization of time used in (DS) are left out in (Sjk) merely to reduce clutter

in the equations and allow the reader to see how we now have a …nite system of equations (either 3 or 4)

for which we must solve for 2 variables v1 and v2 for each translational and resolutional combination j,k .

The …nite di¤erence approximations to the time derivatives used in (DS) are actually used for performing

the calculations.
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As such, solving for the optic ‡ow has gone from being an il l-posed problem to one that is well-posed.

Thus, we now have a matrix manipulation problem to solve for a …nite number of vectors since j and k are

…nite [3], [7]:

Mjkv = Yjk (18)

Seemingly, all of our obstacles have been overcome in transitioning to the …nite system of di¤erence

equations in Equation (18). The trick to seeing that the solutions to the problem in Equation (18) will

be stable (i.e. the time-aliasing vs. aperture problem has been surmounted) comes from the fact that the

velocity vectors v(x, t) are being solved for at each resolution level j in the multiresolution analysis. The

determinant of Mjk could be 0 or very close to it if the motion is occurring on a scale much di¤erent than

2¡j in that region covered by the support of θn
jk. This would cause the approximation to v to be very

unstable at that level of resolution. However, due to the fact that Bernard uses two indices, j and k, to

achieve a sampling which is spatially localized at various scales, the rate of approximation for a given region

is unhindered by a particular resolution level yielding an unstable result. In other words, since there can

only be one vector assigned to represent the optic ‡ow at location x at time t, the solutions from each level

of resolution collectively represent enough information to describe whatever motion is occurring, either large

or small scale, with one single vector. Thus we see that Bernard’s approach can be viewed mathematically

as an attempt to stabilize the approximation to v more so than as a way to regularize the problem [3], [7].

Issues of stability with regards to solving an overdetermined system, as Equation (18) plainly is, are not

addressed within the scope of this paper, however, they are dealt with brie‡y by Bernard in [3, Ch. 4.1.4].

The …nal challenge to implementing Bernard’s method of solving for optic ‡ow stems from having to take

the derivative of a two-dimensional wavelet as is required to set up the system of equations Sjk.

6.4 Obstacle to Implementation

Although the computation of the inner products
¿

I,
∂θn

jk

∂x1

À
and

¿
I,

∂θn
jk

∂x2

À
may not seem overly compli-

cated at …rst glance, a signi…cant obstacle lies in the requirement to take the derivative of a two-dimensional

wavelet. Here the di¢culty arises from the need to construct wavelets in a manner that lends itself to

taking their derivative. Our contention is that we need not construct the derivative at every point over R2.

Rather, when dealing with a discrete signal I , the value of
∂θn

jk

∂x1
and

∂θn
jk

∂x2
need only be known at the integer

points of (x1, x2) [22].

The discussion of this theory [22] will be conducted in one-dimension so as to avoid the confusion and

clutter accompanying the analogous explanation in two-dimensions. Our example problem begins with g(t),

a 1-D analog signal which has compact support [0, L] where L = 2J for some number J and g(L) = 0. The

discrete approximation to g(t) is formed so that the sampling interval is of length 1, b(n) = g(n). To ease the
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burden of notation, we employ the normalized signal f (t) having support 0 · t · 1 such that f(t) = g(2Jt).

Therefore, we see that f (t) is sampled at intervals of length 2¡J =
1
L

so that f
³ n

2J

´
= b(n).

Analysis of the signal will be conducted using a dyadic, multi-resolutional decomposition of L2(R) based

upon a scaling function φ of compact support [0,N ] with φ(N ) = 0. By dyadic, we mean that each level

of resolution drops down in coarseness by a factor of 2. As is stated in [19], φ satis…es the scaling equation

built from a discrete …lter fhng having support 0 · n · N ¡ 1,

φ(t) =
p

2
N¡1P
l=0

hlφ(2t ¡ l).

In the multi-resolutional decomposition of L2(R) based upon φ, the function f (t) is said to belong to the

space VJ where 2¡J =
1
L

is the sampling interval. The goal of our approach is to initialize the multiresolution

by approximating the values of
nD

f,
¡
φJ, k

¢0Eomax

k=min
which are indexed over a range min · k · max of non-

zero values, and then to engage a cascade algorithm which is based upon the scaling equation to iteratively

…nd the inner products
½¿

f ,
³
φ(J¡j) ,k

´0À¾
for 1 · j · J .

From [8], the scaling equation can be evaluated for an integer value according to

φ(n) =
p

2
N¡1P
l=0

hlφ(2n ¡ l)

=
p

2
P
k

hk¡2nφ(k).

where k is indexed by 0 · k ¡ 2n · N ¡ 1.

De…ning the matrix

m0n,k =
½ p

2hk¡2n 0 · k ¡ 2n · N ¡ 1
0 otherwise

,

and restricting to the integer values, the scaling equation can be rewritten

φ(n) =
X

k

m0n,kφ(k) where 0 · k ¡ 2n · N ¡ 1. (19)

Di¤erentiating the scaling equation, a new scaling equation for φ0 results,

φ0(t) = 2
p

2
N ¡1X

l=0

hlφ0(2t ¡ l). (20)

If we restrict Equation (20) to the integers and apply the principle of substitution from Equation (19) we

obtain

µ
1
2

¶
φ0(n) =

X

k

m0n,kφ0(k) where 0 · k ¡ 2n · N ¡ 1. (21)
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From Equations (19) and (21), we see that the sequence of integer-sampled values of the scaling function

φ comprise a right eigenvector for the matrix m0 with eigenvalue 1, and the integer-sampled values of the

derivative of the scaling function φ0 make up a right eigenvector for m0 with eigenvalue 1/2. In [8], a

rather cryptic process unfolds in order to …nd which eigenvectors correspond to the sampling of the scaling

function and the sampling of its derivative. The exact code required to perform this process in MATLAB
R°

is included in the Appendix. In short, the …rst part of Daubechies’ scheme chooses that λ = 1 eigenvector

which is orthogonal to the left eigenvector [1, 1, 1, 1] of m0 whose sum of components is equal to 1. This

will be the sequence fφ(n)g where 0 · n · N ¡ 1 which are the non-zero values of the integer samplings

of the scaling function. The second part of the scheme chooses that λ = 1/2 eigenvector whose sum with

the vector [1,2, 3, 4] belongs to the span of the previous left eigenvector [1, 1, 1, 1]. This will in turn be

the sequence fφ0(n)g where 0 · n · N ¡ 1 which are the non-zero values of the integer samplings of the

derivative of the scaling function [8].

Having found the sequence fφ0(n)gn=0,..,N¡1, we may initialize the algorithm for computing inner prod-

ucts of the signal with the derivative of the scaling function. We continue to use J as the dyadic exponent

determined by the support of the original signal g(t), so that 2J = L. In addition, we make use of the

de…nition φ0
J, m(t) = 2J/2φ0(2J t ¡ m). For any integer value of m, we can approximate the value of the

inner product
D
f,

¡
φJ, m

¢ 0E according to:

D
f,

¡
φJ, m

¢0E =

1Z

t=¡1

f (t) ¢ d
dt

³p
2Jφ(2J t ¡ m)

´
dt,

using the Chain Rule and the fact that 0 · t · 1,

=
p

2J2J

1Z

t=0

f (t)φ0(2J t ¡ m)dt,

breaking up the integral into segments,

=
p

2J 2J
2J ¡1X

n=0

(n+1)/2JZ

t=n/2J

f(t)φ0(2Jt ¡ m)dt,

using a Riemann approximation to the segments of the integral,

»=
p

2J2J
2J¡1X

n=0

f
¡
n/2J¢ ¢ φ0(2J ¡

n/2J ¢ ¡ m) ¢ ¡
1/2J¢

,

cancelling out the 2J factors and substituting f
¡
n/2J

¢
= b(n),

»=
p

2J
2J¡1X

n=0

b(n) ¢ φ0(n ¡ m),
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making use of the convolution operator ¤,
»=

p
2J ¢

³
b ¤ eφ0´

(m),

where

b = fb(n)gn=L¡1=2J¡1
n=0

φ0 =
©
φ0(n)

ªn=N¡1
n=0

eφ0
(n) = φ0(¡n).

Thus the inner product of our signal with the derivative of the scaling function has been reduced to

a seemingly simple convolution between the integer-sampling points of these two functions. However, one

issue still remains before we can begin computing these coe¢cients, that being the boundary conditions of

the signal. Obviously, a translated and dilated derivative scaling function will have di¤erent boundaries

than the original φ0. This means that their support will extend past the boundaries of the signal, drastically

a¤ecting the corresponding inner products, a fact that cannot be ignored [22].

The basis for addressing this problem is presented in [19, Ch. 7.5]. He contends that in a case such

as this, one must employ a circular convolution. The idea is to extend the "discrete signal" b to make it

a periodic signal with period L, and the "discrete …lter" φ0 to a periodic …lter with period max(N, L). In

essence the convolution becomes a "circular convolution" of two periodic signals that has itself a fundamental

period L. From this information, we extract the "fundamental period signal", a sequence indexed by

0 · k · N ¡ 1. This sequence represents what we were seeking, the inner products at resolution level J

[24], [22].

Within the WAVELAB
R°

add-on package to MATLAB
R°

, written by Dr. David Donoho and his

colleagues at Stanford University, there exists an m-…le aconv.m which performs the circular convolution

according to:

J Level Inner Products =
p

2J ¢ aconv(Dphi0, b).

where Dphi0 represent the integer samplings of the derivative of the scaling function, fφ0(n)gn=0,..,N ¡1, and

b is the vector containing the integer samplings of the original function g(t) [22].

Having found the inner products at level J , denoted from now on as JLevInnerProds, we seek now to

…nd the inner products at resolution level J ¡ 1, denoted by J_1LevInnerProds. We make use of the scaling

equation as it applies to any two successive levels in a multiresolution [19],

φ(J¡1), m(t) =
N¡1X

l=0

hl¡2nφJ, l(t), (22)
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evoking once more the de…nition φj,k (t) = 2j/2φ(2j t ¡ m). We di¤erentiate Equation (22) to yield

³
φ(J¡1), m

´0
(t) =

N¡1X

l=0

hl¡2n
¡
φJ, l

¢ 0 (t). (23)

Note that the derivative in Equation (23) is being taken after the scaling function φ is dilated and translated,

i.e.
¡
φj,k

¢0 not
¡
φ0¢

j,k . Substituting this result into the inner product we see

¿
f,

³
φ(J¡1), m

´0À
=

N ¡1X

l=0

hl¡2n

D
f,

¡
φJ, l

¢ 0E . (24)

Here, let h denote the sequence of non-zero coe¢cients for the …lter h(k) = hk indexed over the range

0 · k · N ¡ 1. Further, let eh denote the …lter under involution, i.e. eh(k) = h(¡k) which is a sequence

indexed over ¡(N ¡1) · k · 0. We apply our …nding of JLevInnerProds to rewrite Equation (24) in terms

of a convolution as outlined in [19],

J_1LevInnerProds =
¿

f,
³
φ(J¡1) , m

´0À
=

³
JLevInnerProds ¤ eh

´
(2m). (25)

Notice that after the convolution is performed, the result is downsampled by a factor of 2 according to the

argument 2m. This dyadic decimation of the inner products corresponds to the coarsening of the resolution

by a factor of 2 as one goes from level J to level J ¡ 1.

The issue of the signal’s boundary must also be remembered when computing these lower resolution

inner products. Fortunately, the WAVELAB
R°

m-…le DownDyadLo.m accounts for this fact in addition

to performing the required downsampling. Therefore, we can e¢ciently engage our cascade algorithm for

…nding the J ¡ 1 level inner products by

J_1LevInnerProds = DownDyadLo(JLevInnerProds , h), (26)

where h represents the vector containing the values h(k) = hk indexed over the range 0 · k · N ¡ 1.

The cascade algorithm based upon the scaling equation extends further down the levels of resolution as

well,

J_2LevInner Prods =
¿

f,
³
φ(J¡2), m

´0À
=

³
J_1LevInnerProds ¤ eh

´
(2m), (27)

and is implemented in WAVELAB
R°

by

J_2LevInner Prods = DownDyadLo(J_1LevInnerProds, h). (28)
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According to the dyadic decimation of the inner products, this process of performing a circular convolution

and then downsampling allows the multiresolution to extend down J levels, i.e. to the J ¡ J = 0 level of

resolution, where there will only be 1 inner product being computed for the set J_JLevInnerProds [22].

Throughout this discussion, we have been using the scaling function φ to generate a basis for our

multiresolution analysis. What if we had desired to use the mother wavelet ψ instead? Looking to the

wavelet equation, we see that the answer is not overly complicated. Recall,

ψ(t) =
p

2
N ¡1P
l=0

glφ(2t ¡ l),

where the …lter coe¢cients gl can be solved for gl =
p

2
Z 1

¡1
ψ(t)φ(2t ¡ l)dt.

We restrict the wavelet equation to the integer values as before in the scaling equation,

ψ(n) =
p

2
N ¡1P
l=0

glφ(2n ¡ l),

=
p

2
P
k

gk¡2nφ(k),

where 0 · k ¡ 2n · N ¡ 1. Now if we de…ne the matrix m1

m1n,k =
½ p

2gk¡2n 0 · k ¡ 2n · N ¡ 1
0 otherwise ,

we may rewrite the wavelet equation restricted to the integers as

ψ(n) =
P
k

m1n,kφ(k) where 0 · k ¡ 2n · N ¡ 1.

Now, by applying the results of Equations (19) to (21), we see that we may …nd the exact values of the

derivative of the mother wavelet at the integers according to the matrix multiplication

ψ0(n) = 2
P
k

m1n,kφ0(k) where 0 · k ¡ 2n · N ¡ 1.

We now seek to …nd the inner products of the signal with these values fψ0(n)gn=0,.. ,N¡1. This can be

accomplished using the same process as outlined for …nding the J level inner products of φ0. Therefore, the

circular convolution is performed to …nd

Wavelet J Level Inner Products =
D

f,
¡
ψJ, m

¢0E =
p

2J ¢ aconv(Dpsi0, b),

where Dpsi0 represents the integer samplings of the derivative of the mother wavelet, fψ0(n)gn=0,..,N ¡1, and

b is the vector containing the integer samplings of the original function g(t) [22].
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Just as in Equation (22), we can extend the wavelet equation to any two successive levels in the multireso-

lution [19],

ψ(J¡1) , m(t) =
N ¡1X

l=0

gl¡2nφJ, l(t), (29)

again using the de…nition ψj,k (t) = 2j/2ψ(2jt ¡ m) [19]. We apply the results of Equations (23) and (24) to

obtain the equation for inner products with wavelets at lower levels of resolution,

¿
f,

³
ψ(J¡1) , m

´0À
=

N¡1X

l=0

gl¡2n

D
f,

¡
φJ, l

¢0E .

Since ψ is built from φ as in Equation (29), the exact same initialization to the cascade algorithm

applies. The integer samplings of the derivative of the scaling function,
©
φ0(n)

ªN¡1
n=0 , are used to …nd the

inner products at level J,
D
f,

¡
φJ, m

¢0E, what we have named JLevInnerProds. These are used by the m-…le

DownDyadLo.m to compute the J ¡ 1 level inner products with the scaling function,
¿

f,
³
φ(J¡1), m

´0À
.

However, WAVELAB
R°’s matching m-…le DownDyadHi.m uses them also to compute the J ¡ 1 level inner

products with wavelets,
¿

f ,
³
ψ (J¡1), m

´0À
. Within the process of evaluating

WavJ_1LevInnerProds =
¿

f,
³
ψ(J¡1), m

´0À
= DownDyadHi(JLevInnerProds , h), (30)

DownDyadHi.m performs the exact same tasks (i.e. circular convolution, downsampling by a factor of 2) as

DownDyadLo.m, however, it manipulates the …lter h to formulate the …lter g according to gk = (¡1)kh1¡k.

Therefore, just as was the case with the scaling functions, the inner products can be found with the derivative

of the wavelets to extend the multiresolution down J levels to the J ¡ J = 0 level of resolution, where the

dyadic decimation will have left only 1 inner product to be computed for the set WavJ_JLevInnerProds

[22].

Finally, as we have seen that a multiresolution can be carried out iteratively using the derivative of both

a 1-D scaling function and a 1-D wavelet, we recall that we must compute the inner products between the

derivatives of our two-dimensional wavelets and the grayscale intensity function,
¿

I,
∂θn

jk

∂x1

À
and

¿
I,

∂θn
jk

∂x2

À
,

to solve Bernard’s equations Sjk. The process we use to generate these inner products relies on the same

concept of separability that was applied to create the two-dimensional wavelets θn (for n = 1, .., 4) from the

tensor products of one-dimensional scaling functions and wavelets, φ and ψ [3], [7], [28].

For example, let’s say we seek to …nd the inner products

*
I,

∂θ1
jk

∂x1

+
and

*
I,

∂θ1
jk

∂x2

+
. Since θ1

jk(x1, x2) =

ψjk1
(x1)φjk2

(x2), we see that
∂θ1

jk

∂x1
= ψ0

jk1
(x1)φjk2

(x2) and
∂θ1

jk

∂x2
= ψjk1

(x1)φ0
jk2

(x2). Since the two-

dimensional wavelets are separable in the x1 and x2 directions, so are the 2-D inner products. In other words,



36*
I,

∂θ1
jk

∂x1

+
=

­
I(x1),ψ 0

jk1(x1)
® ­

I(x2), φjk2(x2)
®
. The …rst factor in this tensor product,

­
I(x1), ψ0

jk1(x1)
®
,

is de…ned so that we are taking grayscale intensity values pixel row by pixel row (i.e. I(x1) = I(x1, x2)

where x2 is …xed) to generate a 1-D inner product. In the second factor,
­
I(x2), φjk2(x2)

®
, intensity

values are being taken pixel column by pixel column (i.e. I(x2) = I(x1, x2) where x1 is …xed). Like-

wise, we may write

*
I,

∂θ1
jk

∂x2

+
as a tensor product of one-dimensional inner products,

*
I,

∂θ1
jk

∂x2

+
=

­
I(x1), ψjk1(x1)

® ­
I(x2), φ0

jk2(x2)
®
. Now, we see that we may apply the previous analysis for comput-

ing the 1-D inner products with either φ, ψ or their derivatives at various levels of resolution j using the

cascade algorithm. This provides all of the necessary components for the construction of Sjk [22], [3], [7],

[28].

As the …nal implementation of Bernard’s algorithm currently remains an un…nished product, we turn

to the completely di¤erent approach to solving for optic ‡ow …rst proposed by Horn and Schunck [14].

7 Calculus of Variations Approach

7.1 An Additional Constraint Equation

Optic ‡ow is no di¤erent from any other question appearing in applied mathematics in that vastly

di¤erent methods have been proposed to …nd a solution. While Bernard relied on a multiscale approach to

treat the problem as a well-posed matrix equation [3], [4], [5], [6], [7], Horn and Schunck instead turn to the

addition of an additional constraint upon the motion of grayscale intensity [14], [3].

The approach is founded upon the premise that sharp edges occurring in an image sequence cause

competition between a large number of vectors representing the optic ‡ow. In other words, if two distinct

objects which neighbor each other are moving with di¤erent velocities, it becomes very di¢cult to determine

the motion of grayscale intensity along a sharp boundary between them [14]. This concept is illustrated in

Figure 13.

Figure 13: Sharp Edges Cause Competition
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Here we have two images from a sequence in which a white rectangle borders a black rectangle with a gray

background. The white rectangle moves up while the black one moves down. Describing the optic ‡ow

poses no problem except at the sharp edge which de…nes the boundary between the two ob jects. Along

this edge, it becomes unclear whether the vector …eld should indicate an upward or a downward motion of

grayscale intensity.

According to Horn and Schunck, this di¢culty may be overcome by imposing a smoothness constraint

upon the optic ‡ow …eld. In essence, the constraint carries out a form of averaging to allow for the …nding

of one single "averaged" vector to represent the optic ‡ow. The expense of such a technique is the loss of

sharpness [14].

This smoothness constraint can be expressed as the minimization of the square of the magnitude of the

gradient of the optic ‡ow velocity. To ease the burden of notation for the following discussion, we adopt

x and y as the Cartesian coordinates rather than x1 and x2. Furthermore, we refer to the optic ‡ow as

having components u and v in v = (u, v) whereas we had previously used v1 and v2. If we de…ne the

gradients ru = (ux , uy) =
µ

∂u
∂x

,
∂u
∂y

¶
and rv = (vx , vy ) =

µ
∂v
∂x

,
∂v
∂y

¶
, then the measure of the departure

from smoothness in the velocity ‡ow may be expressed as

ε2
S = kruk2 + krvk2 =

µq
(ux)2 + (uy )2

¶2

+
µq

(vx)2 + (vy)
2
¶2

= u2
x + u2

y + v2
x + v2

y .

Furthermore, we incorporate the intensity constraint equation (i.e. the governing equation for optic ‡ow)

and represent the error due to the grayscale intensity changing over local space and time as

εI = Ixu + Iyv + It,

where Ix =
∂I
∂x

, Iy =
∂I
∂y

, and It =
∂I
∂t

.

The goal then becomes to minimize the total error

ε2 =
Z Z ¡

ε2
I + δε2

S
¢
dxdy. (31)

This minimization of Equation (31) is achieved by …nding the appropriate values for the optic ‡ow velocity

v = (u,v). Thus we are presented with a scheme for satisfying the constraint equations by solving for the

vector …eld we seek. We go about such a task using a method called Calculus of Variations [14], [18], [13,

Ch. 2].
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7.2 Calculus of Variations

One of the key concepts in Calculus of Variations is what is known as a functional. Consider a set γ of

functions which all satisfy certain conditions. A functional can be thought of as no more than a quantity

which assumes a speci…c value corresponding to each function in γ . In essence, a functional is a function of

functions. For example, the de…nite integral I =
R b

a f (x)dx is a functional since its value is determined by

the function f [13, pg. 131].

The most fundamental problem in Calculus of Variations is to …nd the necessary conditions on u so that

it minimizes the functional

I [u] =
Z Z

­
F (u, ux ,uy) dxdy, (32)

where F can be di¤erentiated at least twice in both x and y. In order to …nd the necessary conditions on u,

we consider the functional J[ε] de…ned as I [u + εη] where u is the minimizer and η is any smooth function

in the region ­ which vanishes on the boundary of ­, denoted by ∂­. In order for u to minimize Equation

(32), ε = 0 must minimize J. Therefore, we di¤erentiate J with respect to ε and set it equal to 0 when

ε = 0. However,

J[ε] =
Z Z

­
F

¡
u + εη, ux + εηx , uy + εηy

¢
dxdy, (33)

which yields

J 0[0] =
Z Z

­

¡
ηFu + ηxFux + ηyFuy

¢
dxdy = 0, (34)

where Fu =
∂F
∂u

, Fux =
∂F
∂ux

, and Fuy =
∂F
∂uy

.

We now note that

ηxFux = ¡η(Fux)x + (ηFux)x , ηxFux = ¡η(Fuy)y + (ηFuy)y .

If we apply the de…nition of divergence, div hm, ni =
∂m
∂x

+
∂n
∂y

, we see that

J 0[0] =
Z Z

­
η

¡
Fu ¡ (Fux)x + (Fuy)y

¢
dxdy +

Z Z

­
div

¡
η

­
Fux, Fuy

®¢
dxdy = 0. (35)

Next we apply the Divergence Theorem which states:
Z Z

­
div(W)dxdy =

Z

∂­
(W ¢ n) dt where n is

the outward normal vector to ∂­. This allows us to replace the second integral in Equation (35) withZ

∂­

¡¡
η

­
Fux, Fuy

®¢ ¢ n¢
dt. Since η was de…ned to satisfy zero boundary conditions on ∂­, this integral

vanishes. Therefore, we may write
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J 0[0] =
Z Z

­
η

¡
Fu ¡ (Fux)x + (Fuy )y

¢
dxdy = 0, (36)

which applies for any smooth function η in ­. In order for this to be the case, the integrand must itself be

equal to zero. This provides the necessary condition on F and u for there to be a minimizer:

Fu ¡ (Fux)x ¡ (Fuy )y = 0. (37)

Equation (37) is referred to as the Euler-Lagrange equation for Equation (32) [18], [13, Ch. 2].

Let us now examine an example problem, namely Laplace’s Equation. Consider the Dirichlet integral

J [u] =
Z Z

­

¡
u2

x + u2
y
¢

dxdy. (38)

Here we see that F (u, ux ,uy) = u2
x + u2

y . We now apply Equation (37),

Fu ¡ (Fux)x ¡ (Fuy)y = 0

0 ¡ (2ux)x ¡ (2uy)y = 0

¡2(uxx + uyy) = 0

So that we obtain

r2u = 0, (39)

where r2u = uxx + uyy =
∂2u
∂x2

+
∂2u
∂y2

is the Laplacian of u [18], [13, Ch. 2].

We now seek to show that the same argument may be applied to a functional J which operates on a

vector u = (u, v). In this case, we seek to minimize

J[u, v] =
Z Z

­
F (u, v, ux, uy, vx, vy)dxdy. (40)

Applying the principle of the Euler-Lagrange equation to two dimensions we see that

Fu ¡ (Fux)x ¡ (Fuy)y = 0, Fv ¡ (Fvx)x ¡ (Fvy )y = 0. (41)

We now have the basic tools needed to apply Calculus of Variations to the two-dimensional context of

optic ‡ow stated as a minimization problem in Equation (31) [18], [13, Ch. 2].
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7.3 Application of Calculus of Variations to Optic Flow

Recalling our de…nitions of εI and ε2
S , we rewrite Equation (31) as a functional with arguments u and

v representing the components of the optic ‡ow, v = (u, v).

J [u, v] =
Z Z

­
(It + Ixu + Iyv)2 + δ(u2

x + u2
y + v2

x + v2
y )dxdy. (42)

Since the term δ(u2
x + u2

y + v2
x + v2

y) represents the departure from smoothness in the velocity ‡ow, it may

be viewed as making the problem less "rigid" mathematically in that it allows for a certain amount (i.e. an

amount proportional to the regularization parameter δ) of elastic stretching in the …eld which de…nes optic

‡ow [1].

We now apply Equation (41) and the result obtained from Laplace’s Equation,

Fu ¡ (Fux)x + (Fuy)y = 0, Fv ¡ (Fvx)x + (Fvy )y = 0

2Ix(It + Ixu + Iyv) ¡ δ(2r2u) = 0, 2Iy(It + Ixu + Iyv) ¡ δ(2r2v) = 0

which yields

Ix(It + Ixu + Iyv) = δr2u, Iy (It + Ixu + Iyv) = δr2v. (43)

These are the same equations which Horn and Schunck attempt to solve for the optic ‡ow v = (u, v) [18],

[14]. Notice that there are two equations with two unknowns, making the problem well-posed.

At this point, our method diverges from that of Horn and Schunck. We seek to apply the Galerkin

method in order to …nd a numerical solution to the system of partial di¤erential equations in (43) whereas

an approach based on …nite di¤erences is proposed in [14].

7.4 Insertion of the Galerkin Method

Our departure from the …nite di¤erence scheme presented by Horn and Schunck bears no relation to a

lack of trust in their method. On the contrary, the theoretical development behind …nite di¤erences shows

strong promise for application to such a problem as optic ‡ow [14], [10], [25], [15].

Rather, we choose the Galerkin method based on the fact that it seeks solutions of partial di¤erential

equations in terms of a countable basis φi [18]. Extensive work has been done to prove the e¤ectiveness

of the Galerkin or "spectral" method in solving PDEs using traditional bases such as Fourier (sines and

cosines) or polynomials (Chebyshev, Legendre, or Hermite) [11], [21], [12], [25], [9], [18]. Thus the appeal

of applying the Galerkin method to optic ‡ow, aside from the fact that it has never been done before, is
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that it lends itself to the employment of a wavelet basis. Although the strategy for making use of wavelets

in this context di¤ers greatly from Bernard’s approach, there exists the possibility that they will open up a

new door in the overall quest to solve the problem of optic ‡ow. For now, we describe the method in terms

of a generic countable basis φi.

Going back to Equation (36), we choose a special class of functions η, namely φi , with the end goal

being to seek solutions of the form

u(x, y, t) =
1X

j=1

1X

i=1

ai, j(t)φi(x)φj(y), v(x, y, t) =
1X

j=1

1X

i=1

bi, j(t)φi(x)φj(y). (44)

Here, we see that the components of optic ‡ow can be written as an exact sum of time dependent coe¢cients

multiplying a two-dimensional spatially dependent basis. In practice, we are only able to compute a …nite

number of terms in Equation (44). If we use enough terms, then the equations in (44) can be approximated

u(x, y, t) ¼ uN (x, y, t) =
NX

j=1

NX

i=1

ai, j (t)φi(x)φj (y), v(x, y, t) ¼ vN (x, y, t) =
NX

j=1

NX

i=1

bi, j (t)φi(x)φj (y).

(45)

Now, applying Equations (36) and (43), we see

R R
­ φiφj

¡
Fu ¡ (Fux)x ¡ (Fuy )y

¢
ju=uN, v=vN dxdy »= 0, i = 1, 2, ..., N and j = 1, 2, ..., N

R R
­ φiφj

¡
Ix(It + Ixu + Iyv) ¡ δr2u

¢ ju=uN, v=vN dxdy »= 0, i = 1, 2, ..., N and j = 1, 2, ..., N (46)

and

R R
­ φiφj

¡
Fv ¡ (Fvx)x ¡ (Fvy)y

¢
ju=uN, v=vN dxdy »= 0, i = 1, 2, ..., N and j = 1, 2, ..., N

R R
­ φiφj

¡
Iy (It + Ixu + Iyv) ¡ δr2v

¢ ju=uN, v=vN dxdy »= 0, i = 1, 2, ..., N and j = 1, 2, ..., N. (47)

Equations (46) and (47) represent 2N 2 equations with 2N 2 unknowns. Thus, we have utilized the

smoothness constraint equation, calculus of variations, and the Galerkin method to create a solvable,

well-posed problem [18], [14]. The di¢culty now lies in …nding a feasible scheme for implementation in

Mathematica
R°

, our scienti…c computing program of choice for this method.
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7.5 Issues Of Implementation

In both Equations (46) and (47), we observe the presence of the term It , the time derivative of the

grayscale intensity function. The de…nition of this derivative states that

It =
∂I(x,y, t)

∂t
= lim

h!0

I(x, y, t + h) ¡ I(x, y,t)
h

.

A problem arises as one tries to implement the Galerkin approach to solve for optic ‡ow in that the value

of h cannot be taken to the limit of 0. The time step is …xed by the interval between discrete frames in

the image sequence. Thus we must choose an approximation to It . For our purposes, we have very simply

chosen h = 1 so that It = I(x,y, t + 1) ¡ I(x, y, t). Although this is di¤erent from the approximation given

in [14], no evidence has presented itself so far to show that our approach will speci…cally cause instability.

Another issue presents itself with relation to the spatial derivatives of the intensity function, Ix and

Iy. In order to take these derivatives directly, we must have a function I which is continuous in the x

and y directions. This is accomplished by interpolating the discrete grid of pixel intensity values obtained

by importing a grayscale image into Mathematica
R°

. The command which performs this task is called

ListInterpolation.

The other spatial derivatives being taken, namely the Laplacians r2u and r2v, do not pose such an

obstacle because the components of the velocity can be represented in terms of di¤erentiable basis functions,

u(x, y, t) =
1P

j=1

1P
i=1

ai, j (t)φi(x)φj (y), v(x, y, t) =
1P

j=1

1P
i=1

bi, j(t)φi(x)φj (y).

Di¤erentiability of the cosine function is one reason for our choice of the Fourier basis to serve as φ.

The other reasoning comes from the fact that there already exists a solid foundation for use of this basis in

the Galerkin method [11], [21], [12], [25], [9], [18]. There exists a de…nite problem, however, in applying

periodic bases of in…nite support, such as cosines, to functions which are of …nite domain and are most likely

non-periodic, such as the optic ‡ow generated by a grayscale image sequence. Traditionally, to attain a

good quality approximation of such a function using the basis fφn(x) = cos(nπx)gn , a very large number

of modes are required. This means that the "cut o¤" number N will have to be very large for u ¼ uN

and v ¼ vN . Thus our computation of the optic ‡ow vectors which requires Mathematica
R°

to solve 2N 2

integral equations for 2N 2 unknowns will take an extremely long amount of time and may even exhaust the

memory for a standard computer [12], [26].

As was mentioned earlier, the Galerkin method can be executed using a variety of di¤erent choices

for basis functions φ. The di¢culty of approximating the optic ‡ow, as described in the preceding para-

graph, would be be better approached using a basis whose functions were indexed over both space and

scale, such as wavelets [26], [16]. The only problem with using such a basis is that the approxima-

tions to the optic ‡ow then become uN (x,y, t) =
NX

j=1

NX

k1=1

NX

k2=1

aj, k1, k2(t)φj, k1(x)φj, k2(y) and vN (x, y, t) =
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NX

j=1

NX

k1=1

NX

k2=1

bj, k1, k2(t)φj, k1(x)φj, k2(y) which when substituted into Equations (46) and (47) result in the

solving of 2N 3 equations for 2N 3 unknowns. Consequently, the advantage of requiring less terms for a good

approximation may not be gained after all.

As is the case at the completion of every research project, a number of issues still remain unresolved.

Therefore, let us now turn to the results obtained using the protocol for implementation which is already in

place.

8 Results

8.1 Wavelet Based Multiscale Approach

Results have not yet been attained using this approach. The remaining unresolved issues of implemen-

tation are extremely close to being overcome.

8.2 Calculus of Variations Approach

The …rst attempt at …nding an optic ‡ow vector …eld was conducted with a very simpli…ed approximation

to motion occurring between two images. Since a grayscale image is treated as a surface by a computer, we

simply used known functions to create surfaces that would represent two pseudo-images. Our …rst image in

the sequence was represented by the function e1(x, y) = cos(2πx) sin(3πy) over the domain [0, 1] £ [0, 1]. In

order to simulate motion we add to e1 a bump, and so create the second image represented by the function

e2(x,y) = e1(x, y) + ga,b(x,y), where

ga,b(x, y) =

(
cos(4π ¢ ra,b(x, y)) if ra,b(x, y) =

p
(x ¡ a)2 + (y ¡ b)2 <

1
8

0 otherwise
and we set a = 0.45 and b = 0.53.

Figure 14 illustrates the …rst and second pseudo-images and then the bump which simulates the motion

of grayscale intensity between the two.

Figure 14: Simple Case Pseudo-Images and Bump
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The corresponding optic ‡ow vector …elds were solved for with the Mathematica
R°

notebook HS1.nb using

both 3 and 11 modes for the Fourier cosine basis. Figure 15 displays the results.

Figure 15: Optic Flow Between Simple Case Pseudo-Images

For both cases, there are non-trivial vectors occurring only in the region surrounding x = .45 and y = .53.

The rest of the arrows are represented by Mathematica
R°

as having no tails and so they can be assumed to

be of value zero. This result is as it should be since the motion, simulated by the bump, only occurred in a

region centered at (.45, .53). Looking closer at the vector …elds, we see that the motion appears to be taking

place over a larger area when we used 3 modes to solve for it as opposed to using 11. If we glance back

to Figure 14, we see that the relative size of the bump in the domain [0, 1] £ [0, 1] more closely resembles

the size of the region experiencing motion in the optic ‡ow …eld with a solution based on 11 modes. This

provides evidence to support our conjecture that the approximation to the optic ‡ow is more accurate if we

use more basis functions. The only problem is that the solution took signi…cantly more time …nd when

Mathematica
R° had to solve the 2(11)2 = 242 equations instead of the 2(3)2 = 18 equations (approximately

30 minutes as opposed to 2 minutes).

We see that the basic premise of optic ‡ow has been put into place for a simpli…ed approximation to

an image sequence. The next step is to …nd solutions to the optic ‡ow between two grayscale images in an

actual sequence. This was accomplished using a slight variation from our method described earlier.
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Previously, we used the command ListInterpolation to create functions which represented the images so

that we could take the partial derivatives Ix and Iy . The presence of these interpolated functions is one of

the leading factors which cause Mathematica
R°

to take a long time to solve the integral equations in (46)

and (47). Therefore, we attempt to circumvent this problem by using a Fourier cosine series to approximate

the images according to

I(x, y) ¼ IN (x, y) =
NP

n=1

NP
n=1

cm, nφm(x)φn(y),

where the coe¢cients are computed by cm, n =
hI(x, y), φm(x)φn(y)i

hφm(x)φn(y), φm(x)φn(y)i.

Thus, despite all of the partial derivatives and basis functions contained in (46) and (47), the integrands of

these equations become nothing more than a multiplication between sines and cosines. Solving a system

such as this is much less computationally intensive since the integrals can be computed exactly without the

need to consider the e¤ects of interpolation. The drawback to this technique is that accuracy is lost in

performing a cosine approximation of an image. Sharp transitions in grayscale intensity are di¢cult to

capture using functions which are smooth and of in…nite support. The bene…t, however, of this approach is

that we are able to use more frequency modes in the approximation while maintaining the time required to

…nd a solution to the optic ‡ow.

Figure 16 illustrates the fact that the general trend of motion can be captured with this method using

16 modes of frequency. The optic ‡ow is found using the Mathematica
R°

notebook HSGalerkin.nb.

Figure 16: Optic Flow Using the Galerkin Method
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9 Conclusions

We have explored some of the fundamental theory which lies behind two di¤erent methods of solving for

optic ‡ow. Additionally, a solid path has been laid down for the process of implementing each technique.

Many riddles and obstacles that existed before have now been resolved or at least have a starting point from

which to approach them.

It remains inconclusive as to which is a better method, the wavelet based multiscale approach proposed

by Bernard or the calculus of variations scheme developed by Horn and Schunck. On one hand, Bernard’s

technique appears to be more robust in its ability to address the issues of time aliasing and aperture. The

multiresolutional nature of the wavelet basis seems to make it the perfect tool for dealing with such a

problem. A weakness arises in Bernard’s argument, however. He makes the assertion that by carrying

out the multiresolutional decomposition all the way to the coarsest level, the solution to the system of

matrix equations will converge to the actual optic ‡ow. The problem stems from his key assumption that

the optic ‡ow is constant over the support of the wavelets [3], [4], [5], [6], [7]. At the coarser levels of

resolution, the wavelets have support which span a large portion of the image. That the optic ‡ow would

be uniform throughout so large an area is not a realistic statement. Yet without this assumption in place,

the matrix equations cannot be constructed. Therefore, from a sense of practicality, we must end the

multiresolutional decomposition at the level where the optic ‡ow begins to violate this assumption. The

question as to whether or not the solution of this abridged system will still converge to the true optic ‡ow

is left unanswered by Bernard. We see that here he has left an enormous distance between the theory and

the practical implementation of his method.

On the other hand, the approach of Horn and Schunck appears to make more sense from a standpoint of

physics. The key assumption made by Bernard about the constancy of optic ‡ow over various local scales is

replaced with the much more plausible notion that the optic ‡ow velocity makes up a smooth …eld. Consider

Figure 13 again where two neighboring objects are undergoing di¤erent motion. The smoothness constraint

of Horn and Schunck forces the optic ‡ow to take on an "averaged" value at the boundary between the

two objects, thus losing the quality of sharpness [14]. Such a loss of information can be considered much

less signi…cant, however, than that experienced by having to classify the motion as one constant value for

the area taken up by the entirety of both objects as would happen under Bernard’s method. Problems

are encountered with the calculus of variations algorithm, however, when the image sequence is complicated

by the appearance of numerous small objects travelling with distinct velocities either in close proximity or

overlapping each other. In a case such as this, the loss of sharpness experienced at the borders of the

objects is much more substantial since the objects may not comprise su¢cient pixel area to preserve their

true motion from the averaging requirement imposed by the smoothness constraint. The problem with this

fact is that almost any video sequence could realistically contain this kind of complexity. Thus, we see that
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this method may only have practicality for simple image sequences.

Of course, the development of each method has not reached a …nal end. Numerous opportunities

exist to adjust each model to better suit the problem of optic ‡ow. For instance, Bernard’s research has

begun to explore the concept of "image warping". This entails estimating the dynamic of motion as a

uniform translation across the image (i.e. all objects travel with the same velocity) and then solving for the

deviation from this warped image at various scales. The assertion is that if enough scales are used in the

multiresolution, the sum of the large motion estimates with the residual deviations will be su¢ciently close

to the true motion [7]. As was mentioned earlier, the use of the Galerkin method to solve the calculus of

variations problem developed by Horn and Schunck might be improved if a more high-powered basis was

used such as one incorporating wavelets. It is a distinct possibility that there exists some trick which relies

on the orthonormality of wavelets to make the solving of the integral equations replaceable by a much less

computationally intensive task [28].

In addition, some of the fundamental issues relating to optic ‡ow are left unresolved. For instance, let

us say that one was attempting to track the real motion of objects by …lming them and then solving for

the corresponding optic ‡ow. How does one describe the di¤erence between the actual and the projected

motion? The method for overcoming this obstacle, as mentioned earlier, is presented in [23] as an issue of

stochastic error. Simoncelli states that it is possible to use an uncertainty model to express the departure

of the optic ‡ow …eld from the real world scene of motion. It may well prove that this approach does a

reasonably good job of addressing the problem. A highly accurate and adaptive stochastic model would

have to be developed …rst, however, to apply this idea of motion sensing based on optic ‡ow to a context

relevant to the military such as target tracking.

Another signi…cant yet unresolved issue is that the basic physics behind the optic ‡ow model might

not hold. It is possible that the theory behind the governing equation (i.e. that grayscale intensity is

conserved) is not valid. Bernard makes an attempt to address this concern by proposing a Lambertian

surface aspect model to take into account illumination changes [3]. Although this idea makes intuitive sense

as an improvement on the way to solve for optic ‡ow, it is not directly stated in his publications that better

results were attained through the use of it.

Overall, it may be stated that optic ‡ow has a long way to go before it may stand alongside some of

the problems in applied mathematics which are regarded as high powered and crucial for solving. The

approaches taken to resolve the issues have only been explored to an extent where optic ‡ow may be applied

in a limited sense. Questions of theory are not met with answers of implementation across a wide range of

issues. This project has closed some of the gaps in the pursuit of providing more potential for application

of optic ‡ow. However, much work still remains for future studies to build higher upon the foundations. It

will be interesting to observe how far research is able to advance the concept and what it will be applied to.
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It is the hope of the author that some day enough will be known to harness optic ‡ow for use in the domain

of acoustic imagery supplied by sonar systems.

.
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11 Appendix

MATLABR° m-…les

Haar1.m
%Used to compute Level-1 Haar Transform

function [alevel1,dlevel1]=Haar1(f);

%Input f is the sample function to be decomposed

N=length(f);

%Index j is the scale or level

j=1;

%Creation of matrix W to store 1-level Haar wavelets

W=zeros(N/2,N);

for m=1:N/2

W(m,m*2^j-(2^j-1):m*2^j)=[ones(1,2^(j-1))/(2^(j/2)),-1*ones(1,2^(j-1))/(2^(j/2))];

end

%Creation of matrix V to store 1-level Haar scaling functions

V=zeros(N/2,N);

for m=1:N/2

V(m,m*2^j-(2^j-1):m*2^j)=ones(1,2^j)/(2^(j/2));

end

%Finding vectors alevel1=a1,a2,...,aN/2 and dlevel1=d1,d2,...,dN/2

for m=1:N/2

a(m)=f*V(m,:)’;

d(m)=f*W(m,:)’;

end

alevel1=a;

dlevel1=d;
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Haar10.m
%Used to compute Level-10 Haar Transform & plot Averaged Signals

function A=Haar10(f);

%Input f is the sample function to be decomposed

N=length(f);

%Creation of matrix W to store Haar wavelets

W=zeros(N/2,N,10);

for j=1:10

for m=1:N/(2^j)

W(m,m*2^j-(2^j-1):m*2^j,j)=[ones(1,2^(j-1))/(2^(j/2)),-1*ones(1,2^(j-1))/(2^(j/2))];

end

end

%Creation of matrix V to store Haar scaling functions

V=zeros(N/2,N,10);

for j=1:10

for m=1:N/(2^j)

V(m,m*2^j-(2^j-1):m*2^j,j)=ones(1,2^j)/(2^(j/2));

end

end

%Finding vectors alevelj and dlevelj

for j=1:10

for m=1:N/(2^j)

a(m,j)=f*V(m,:,j)’;

d(m,j)=f*W(m,:,j)’;

end

end

%Finding the …rst 10 averaged signals A1 to A10

A=zeros(10,N);

for j=1:10

temp=zeros(1,N);

for m=1:N/(2^j)

temp=temp+a(m,j)*V(m,:,j);
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end

A(j,:)=temp;

end

%Temporary code

%atemp=a(…nd(a(:,2)~=0),2); dtemp=d(…nd(d(:,2)~=0),2);

%A=[atemp’,dtemp’,d(:,1)’];

%Temporary code

a10temp=a(1:2^0,10);

d10temp=d(1:2^0,10); d9temp=d(1:2^1,9); d8temp=d(1:2^2,8);

d7temp=d(1:2^3,7); d6temp=d(1:2^4,6); d5temp=d(1:2^5,5);

d4temp=d(1:2^6,4); d3temp=d(1:2^7,3); d2temp=d(1:2^8,2);

A=[a10temp’,d10temp’,d9temp’,d8temp’,d7temp’,d6temp’,d5temp’,

d4temp’,d3temp’,d2temp’,d(:,1)’];

Daub4_10.m
%Used to compute Level-10 Daub4 Transform & plot Averaged and Detail Signals

function [A,D]=Daub4_10(f );

%Input f is the sample function to be decomposed

N=length(f);

%Creation of matrix V to store Daub4 scaling functions

V=zeros(N/2,N,10);

%Scaling Numbers alpha1, alpha2, alpha3, alpha4

alpha1=(1+sqrt(3))/(4*sqrt(2)); alpha2=(3+sqrt(3))/(4*sqrt(2));

alpha3=(3-sqrt(3))/(4*sqrt(2)); alpha4=(1-sqrt(3))/(4*sqrt(2));

%Create 1st level scaling functions, then from this generate the next levels in the MRA

V(1,1:4,1)=[alpha1,alpha2,alpha3,alpha4];

for m=2:(N/2)

V(m,:,1)=[V(1,N-2*(m-1)+1:N,1),V(1,1:N-2*(m-1),1)];

end

%Create 2nd through 10th level scaling functions from 1st level scaling functions

for j=2:10

for m=1:N/(2^j)-1
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V(m,:,j)=alpha1*V(2*m-1,:,j-1)+alpha2*V(2*m,:,j-1)+...

alpha3*V(2*m+1,:,j-1)+alpha4*V(2*m+2,:,j-1);

end

%Account for wrap around [V_2m+1 & V_2m+2 will exceed N/(2^j)]

m=N/(2^j);

V(m,:,j)=alpha1*V(2*m-1,:,j-1)+alpha2*V(2*m,:,j-1)+...

alpha3*V(2*m+1-N/(2^(j-1)),:,j-1)+alpha4*V(2*m+2-N/(2^(j-1)),:,j-1);

end

%Creation of matrix W to store Daub4 Wavelets

W=zeros(N/2,N,10);

%Scaling Numbers beta1, beta2, beta3, beta4

beta1=(1-sqrt(3))/(4*sqrt(2)); beta2=(sqrt(3)-3)/(4*sqrt(2));

beta3=(3+sqrt(3))/(4*sqrt(2)); beta4=(-1-sqrt(3))/(4*sqrt(2));

%Create 1st level Wavelets, then from this generate the next levels in the MRA

W(1,1:4,1)=[beta1,beta2,beta3,beta4];

for m=2:(N/2)

W(m,:,1)=[W(1,N-2*(m-1)+1:N,1),W(1,1:N-2*(m-1),1)];

end

%Create 2nd through 10th level Wavelets from 1st level Wavelets

for j=2:10

for m=1:N/(2^j)-1

W(m,:,j)=beta1*V(2*m-1,:,j-1)+beta2*V(2*m,:,j-1)+...

beta3*V(2*m+1,:,j-1)+beta4*V(2*m+2,:,j-1);

end

%Account for wrap around [W_2m+1 & W_2m+2 will exceed N/(2^j)]

m=N/(2^j);

W(m,:,j)=beta1*V(2*m-1,:,j-1)+beta2*V(2*m,:,j-1)+...

beta3*V(2*m+1-N/(2^(j-1)),:,j-1)+beta4*V(2*m+2-N/(2^(j-1)),:,j-1);

end

%Finding vectors alevelj and dlevelj

for j=1:10

for m=1:N/(2^j)
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a(m,j)=f*V(m,:,j)’;

d(m,j)=f*W(m,:,j)’;

end

end

%Finding the …rst 10 averaged signals A1 to A10

A=zeros(10,N);

for j=1:10

temp=zeros(1,N);

for m=1:N/(2^j)

temp=temp+a(m,j)*V(m,:,j);

end

A(j,:)=temp;

end

%Finding the …rst 10 detail signals D1 to D10

D=zeros(10,N);

for j=1:10

temp=zeros(1,N);

for m=1:N/(2^j)

temp=temp+d(m,j)*W(m,:,j);

end

D(j,:)=temp;

end

MakeDaub4_10.m
%Purpose is simply to make various Daub4 scaling functions and wavelets on their own

function [V,W]=MakeDaub4_10;

%Arbitrarily set N=1024 since many of the signals we have been using are this length

N=2^10;

%Creation of matrix V to store Daub4 scaling functions

V=zeros(N/2,N,10);

%Scaling Numbers alpha1, alpha2, alpha3, alpha4

alpha1=(1+sqrt(3))/(4*sqrt(2)); alpha2=(3+sqrt(3))/(4*sqrt(2));
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alpha3=(3-sqrt(3))/(4*sqrt(2)); alpha4=(1-sqrt(3))/(4*sqrt(2));

%Create 1st level scaling functions, then from this generate the next levels in the MRA

V(1,1:4,1)=[alpha1,alpha2,alpha3,alpha4];

for m=2:(N/2)

V(m,:,1)=[V(1,N-2*(m-1)+1:N,1),V(1,1:N-2*(m-1),1)];

end

%Create 2nd through 10th level scaling functions from 1st level scaling functions

for j=2:10

for m=1:N/(2^j)-1

V(m,:,j)=alpha1*V(2*m-1,:,j-1)+alpha2*V(2*m,:,j-1)+...

alpha3*V(2*m+1,:,j-1)+alpha4*V(2*m+2,:,j-1);

end

%Account for wrap around [V_2m+1 & V_2m+2 will exceed N/(2^j)]

m=N/(2^j);

V(m,:,j)=alpha1*V(2*m-1,:,j-1)+alpha2*V(2*m,:,j-1)+...

alpha3*V(2*m+1-N/(2^(j-1)),:,j-1)+alpha4*V(2*m+2-N/(2^(j-1)),:,j-1);

end

%Creation of matrix W to store Daub4 Wavelets

W=zeros(N/2,N,10);

%Scaling Numbers beta1, beta2, beta3, beta4

beta1=(1-sqrt(3))/(4*sqrt(2)); beta2=(sqrt(3)-3)/(4*sqrt(2));

beta3=(3+sqrt(3))/(4*sqrt(2)); beta4=(-1-sqrt(3))/(4*sqrt(2));

%Create 1st level Wavelets, then from this generate the next levels in the MRA

W(1,1:4,1)=[beta1,beta2,beta3,beta4];

for m=2:(N/2)

W(m,:,1)=[W(1,N-2*(m-1)+1:N,1),W(1,1:N-2*(m-1),1)];

end

%Create 2nd through 10th level Wavelets from 1st level Wavelets

for j=2:10

for m=1:N/(2^j)-1

W(m,:,j)=beta1*V(2*m-1,:,j-1)+beta2*V(2*m,:,j-1)+...

beta3*V(2*m+1,:,j-1)+beta4*V(2*m+2,:,j-1);
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end

%Account for wrap around [W_2m+1 & W_2m+2 will exceed N/(2^j)]

m=N/(2^j);

W(m,:,j)=beta1*V(2*m-1,:,j-1)+beta2*V(2*m,:,j-1)+...

beta3*V(2*m+1-N/(2^(j-1)),:,j-1)+beta4*V(2*m+2-N/(2^(j-1)),:,j-1);

end

MathematicaR° notebooks
HS1.nb
%This notebook …nds the optic ‡ow for a very simple approximation to motion,

% i.e. motion from one "image" to another is represented as a bump being

% added to the surface describing the grayscale intensity of the …rst image.

<<Graphics‘PlotField‘;

% The parameter nn determines how many modes will be

% used in the approximation, here nn=2.

nn=2;

% This creates the basis for approximating u and v

phi[i_,x_]=Cos[i Pi x];

u = Sum[a[i,j]phi[i,x]phi[j,y],{i,0,nn},{j,0,nn}];

v = Sum[b[i,j]phi[i,x]phi[j,y],{i,0,nn},{j,0,nn}];

% This creates the two "images" in the sequence, e1 and e2,

% the second being the …rst with a bump added

% to represent motion of grayscale intensity.

a1=0.45;b1=0.53;

r[x_,y_,a1_,b1_]=Sqrt[(x-a1)^2+(y-b1)^2];

e1=Sin[3 Pi y]Cos[2 Pi x];

e2=e1 + If[r[x,y]<1/8,Cos[4 Pi r[x,y,0.45.0.53]],0];

% op1 and op2 are the Euler-Lagrange equations where the parameter eps = δ.

op1=D[e1,x]^2 u + D[e1,x]D[e1,y] v - eps (D[u,{x,2}]+D[u,{y,2}]) + D[e1,x](e2-e1);

op2=D[e1,y]^2 v + D[e1,x]D[e1,y] u - eps (D[v,{x,2}]+D[v,{y,2}]) + D[e1,y](e2-e1);
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% This sets up the integral equations to be solved by the Galerkin method

Do[term=Expand[op1 phi[i,x]phi[j,y]];equation1[i,j]=Map[Integrate[#, {x,0,1},{y,0,1}]&,term]==0;

Print[Date[]];Print["i = ", i, ", j = ",j],{i,0,nn},{j,0,nn}];

Do[term=Expand[op2 phi[i,x]phi[j,y]];equation2[i,j]=Map[Integrate[#, {x,0,1},{y,0,1}]&,term]==0;

Print[Date[]];Print["i = ", i, ", j = ",j],{i,0,nn},{j,0,nn}];

coe¤=Flatten[Table[{a[i,j],b[i,j]},{i,0,nn},{j,0,nn}]];

eqns=Flatten[Join[Table[equation1[i,j],{i,0,nn},{j,0,nn}],Table[equation2[i,j],{i,0,nn},{j,0,nn}]]];

% This solves the integral equations and plots the optic ‡ow vector …eld

eps=0.01;

sol=Solve[eqns,coe¤];

uu[x_,y_] = First[u/.sol];

vv[x_,y_] = First[v/.sol];

PlotVectorField[{uu[x,y],vv[x,y]},{x,0,1},{y,0,1}]

HSGalerkin.nb
% This notebook …nds the optic ‡ow for the Rubik’s Cube sequence

% using the Galerkin method in the Calculus of Variations approach

<<Graphics‘PlotField‘

<<Graphics‘Arrow‘

g=Import["C:nnWindowsnnDesktopnnHornSchuncknnrubikseq.gif"];

% The images are …rst interpolated and then the partial derivatives

% are taken and then multiplied to form the terms in the integral equations

e1=ListInterpolation[g[[1,1,1]],{{0,1},{0,1}}];

e3=ListInterpolation[g[[3,1,1]],{{0,1},{0,1}}];

et[x_,y_]=e3[x,y]-e1[x,y];

ex[x_,y_]=D[e1[x,y],x];

ey[x_,y_]=D[e1[x,y],y];

ex2[x_,y_]=ex[x,y]^2;

ey2[x_,y_]=ey[x,y]^2;

exey[x_,y_]=ex[x,y]ey[x,y];

exet[x_,y_]=ex[x,y]et[x,y];

eyet[x_,y_]=ey[x,y]et[x,y];
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<<ex2.sav;

<<ey2.sav;

<<exet.sav;

<<eyet.sav;

<<exey.sav;

(*EX2=Table[ex2[x,y],{x,0,1,1/240},{y,0,1,1/256}];

EY2=Table[N[ey2[x,y]],{x,0,1,1/240},{y,0,1,1/256}];

EXEY=Table[N[exey[x,y]],{x,0,1,1/240},{y,0,1,1/256}];

EXET=Table[N[exet[x,y]],{x,0,1,1/240},{y,0,1,1/256}];

EYET=Table[N[eyet[x,y]],{x,0,1,1/240},{y,0,1,1/256}];*)

X=Table[x,{x,0,1,N[1/240]}];Y=Table[y,{y,0,1,N[1/256]}];

(*PHI[i_,j_]=Table[Cos[i Pi x]Cos[j Pi y],{x,0,1,N[1/240]},{y,0,1,N[1/256]}];*)

PHI[i_,j_]=Outer[Times,Cos[i Pi X],Cos[j Pi Y]];

% The cosine basis functions are set up to use 17 modes of frequency to approximate

% the optic ‡ow vectors

nn=16;phi[i_,x_]=Cos[i Pi x];

u=Sum[a[i,j]phi[i,x]phi[j,y],{i,0,nn},{j,0,nn}];

v=Sum[b[i,j]phi[i,x]phi[j,y],{i,0,nn},{j,0,nn}];

% The cosine approximations for the terms in the integral equations are found

(*Print[Date[]];

Do[coe¤exet[k,l]=1/240 1/256 Plus @@ Flatten[EXET

PHI[k,l]],{k,0,nn},{l,0,nn}];

Print[Date[]];

Do[coe¤eyet[k,l]=1/240 1/256 Plus @@ Flatten[EYET

PHI[k,l]],{k,0,nn},{l,0,nn}];

Print[Date[]];

Do[coe¤exey[k,l]=1/240 1/256 Plus @@ Flatten[EXEY

PHI[k,l]],{k,0,nn},{l,0,nn}];

Print[Date[]];

Do[coe¤ex2[k,l]=1/240 1/256 Plus @@ Flatten[EX2

PHI[k,l]],{k,0,nn},{l,0,nn}];
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Print[Date[]];

Do[coe¤ey2[k,l]=1/240 1/256 Plus @@ Flatten[EY2

PHI[k,l]],{k,0,nn},{l,0,nn}];

COEFFEXET=Table[coe¤exet[k,l],{k,0,nn},{l,0,nn}];

Save["COEFFEXET.sav",COEFFEXET];

COEFFEYET=Table[coe¤eyet[k,l],{k,0,nn},{l,0,nn}];

Save["COEFFEYET.sav",COEFFEYET];

COEFFEXEY=Table[coe¤exey[k,l],{k,0,nn},{l,0,nn}];

Save["COEFFEXEY.sav",COEFFEXEY];

COEFFEX2=Table[coe¤ex2[k,l],{k,0,nn},{l,0,nn}];

Save["COEFFEX2.sav",COEFFEX2];

COEFFEY2=Table[coe¤ey2[k,l],{k,0,nn},{l,0,nn}];

Save["COEFFEY2.sav",COEFFEY2];*)

<<COEFFEX2.sav;

<<COEFFEY2.sav;

<<COEFFEXEY.sav;

<<COEFFEXET.sav;

<<COEFFEYET.sav;

% The integral for a multiplication of 3 basis functions is carried out in advance

% so that it does not have to be computed each time in the future

triple=Table[Integrate[phi[i,x]phi[j,x]phi[k,x],{x,0,1}],{i,0,nn},{j,0,nn},{k,0,nn}];

% The integral equations are set up

Do[equation1[k,l]=COEFFEXET[[k+1,l+1]]+Sum[COEFFEX2[[i+1,j+1]]a[m,n]triple[[i+

1,m+1,k+1]]triple[[j+1,n+1,l+1]],{i,0,nn},{j,0,nn},{m,0,nn},{n,0,nn}]+Sum[

COEFFEXEY[[i+1,j+1]]b[m,n]triple[[i+1,m+1,k+1]]triple[[j+1,n+1,l+1]],{i,0,nn},

{j,0,nn},{m,0,nn},{n,0,nn}] +

eps/4 ((k Pi)^2+(l Pi)^2) a[k,l]==0,{k,0,nn},{l,0,nn}];

Print[Date[],", equation1 is done"];

Do[equation2[k,l]=COEFFEYET[[k+1,l+1]]+Sum[COEFFEXEY[[i+1,j+1]]a[m,n]triple[[

i+1,m+1,k+1]]triple[[j+1,n+1,l+1]],{i,0,nn},{j,0,nn},{m,0,nn},{n,0,nn}]+Sum[

COEFFEY2[[i+1,j+1]]b[m,n]triple[[i+1,m+1,k+1]]triple[[j+1,n+1,l+1]],{i,0,nn},{
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j,0,nn},{m,0,nn},{n,0,nn}] +

eps/4((k Pi)^2+(l Pi)^2) b[k,l]==0,{k,0,nn},{l,0,nn}];

Print[Date[]," , equation2 is done"];

coe¤=Flatten[Table[{a[i,j],b[i,j]},{i,0,nn},{j,0,nn}]];

eqns=Flatten[Join[Table[equation1[i,j],{i,0,nn},{j,0,nn}],Table[equation2[i,j],{i,0,nn},{j,0,nn}]]];

% The optic ‡ow vectors are solved for using δ = .01

eps=0.01;

sol=Solve[eqns,coe¤];

Print[Date[]," sol is done"];

uu[x_,y_]=First[u/.sol];

vv[x_,y_]=First[v/.sol];

discu=Table[uu[x,y],{x,0,1,1/240},{y,0,1,1/256}];

discv=Table[vv[x,y],{x,0,1,1/240},{y,0,1,1/256}];

% The optic ‡ow …eld is plotted

scale=Max[Table[Sqrt[discu[[i,j]]̂ 2+discv[[i,j]]^2],{i,2,239},{j,2,255}]];

graph=Show[Table[Graphics[Arrow[{j,i},{j,i}+

100/scale{discv[[i,j]],discu[[i,j] ]},HeadScaling->Relative], Frame->True,

PlotLabel->StringJoin["Galerkin Method, eps = ", ToString[eps], ", n = ",ToString[nn]]],

{i,2,220,20},{j,2,256,20}]]


